
Temporal Specifications with
Accumulative Values

Udi Boker∗†, Krishnendu Chatterjee†, Thomas A. Henzinger†, and Orna Kupferman∗
∗Hebrew University, Israel

†IST Austria

Abstract—There is recently a significant effort to add quantita-
tive objectives to formal verification and synthesis. We introduce
and investigate the extension of temporal logics with quantitative
atomic assertions, aiming for a general and flexible framework
for quantitative-oriented specifications.

In the heart of quantitative objectives lies the accumulation
of values along a computation. It is either the accumulated
summation, as with the energy objectives, or the accumulated
average, as with the mean-payoff objectives. We investigate
the extension of temporal logics with theprefix-accumulation
assertionsSum(v) ≥ c and Avg(v) ≥ c, where v is a numeric
variable of the system, c is a constant rational number, and
Sum(v) and Avg(v) denote the accumulated sum and average
of the values ofv from the beginning of the computation up to
the current point of time. We also allow the path-accumulation
assertionsLimInfAvg(v) ≥ c and LimSupAvg(v) ≥ c, referring to
the average value along an entire computation.

We study the border of decidability for extensions of various
temporal logics. In particular, we show that extending the
fragment of CTL that has only the EX, EF, AX, and AG temporal
modalities by prefix-accumulation assertions and extending LTL
with path-accumulation assertions, result in temporal logics
whose model-checking problem is decidable. The extended logics
allow to significantly extend the currently known energy and
mean-payoff objectives. Moreover, the prefix-accumulation asser-
tions may be refined with “controlled-accumulation”, allowing,
for example, to specify constraints on the average waiting time
between a request and a grant. On the negative side, we show
that the fragment we point to is, in a sense, the maximal logic
whose extension with prefix-accumulation assertions permits a
decidable model-checking procedure. Extending a temporallogic
that has the EG or EU modalities, and in particular CTL and
LTL, makes the problem undecidable.

I. I NTRODUCTION

Traditionally, formal verification has focused on Boolean
properties of systems, such as “every request is eventually
granted”. Temporal logics such as LTL and CTL, as well as
automata over infinite objects, have been studied as specifica-
tion formalisms to express such Boolean properties.

In the last years we experience a growing need to ex-
tend specification formalisms with quantitative aspects that
can express properties such as “the average success-rate is
eventually above half”, “the total energy of a system is always
positive”, or “the long-run average of the costs is below 5”.
Such quantitative aspects of specification are essential for
systems that work in a resource-constrained environment (as

an embedded system).1

There has recently been a significant effort to study such
quantitative-oriented specification. The approach that has been
mostly followed is to consider specific objectives, as mean-
payoff or energy-level, by means of weighted automata [3],
[4], [5], [6]. No attention, however, has been put in ex-
tending temporal logics to provide a general framework for
quantitative-oriented specifications. In this work, we introduce
and investigate this direction.

When considering quantitative-objectives, one should dis-
tinguish between two different aspects. The first is extending
the verified system to have numeric variables rather than
Boolean ones. The second, which is the core issue, is extending
the specification language to handle accumulative values of
variables along a computation.

To understand the difference between the two issues, con-
sider, for example, a Kripke structure with a numeric variable
‘consumption’ that gets a rational value rather than a Boolean
one. This alone is of no real interest, as numeric variables
over a bounded domain can be encoded by Boolean variables.
Hence, one can easily express properties like “the consumption
in each state is at most 10” with standard temporal logic.

The main challenge in the quantitative setting is the second
issue, namely the accumulation of values. Here, one may wish
to specify, for example, that the total-consumption, from the
beginning of the computation up to the current point of time,
is always positive. Note that accumulation is interesting also
for systems with only Boolean variables. For example, if the
Boolean variable ‘active’ holds exactly when a communication
channel is active, one may wish to specify that the activeness-
rate, namely the rate of states in which active is valid, is always
above half. It is not hard to see that properties that involve
accumulation cannot be specified using standard temporal
logics. Indeed, accumulation yields languages that are no
longerω-regular.

The basic accumulation operators are summation and aver-
age. One may formalize them by adding to temporal logics
atomic assertions of the formγ ≥ γ′, whereγ and γ′ are
arithmetic expressions that use atoms likeSum(v), Avg(v),

1Different classes of formalisms with quantitative aspectsarereal-timelogic
and automata [1], as well as logics that supportprobabilistic reasoning [2]. The
contributions made in these areas are orthogonal to the quantitative aspects
that are the subject of this work. Yet, discrete real-time logics that count the
number of steps turn out to be special cases of this work, as counting steps
can be done by controlled-accumulation. (For details, see Section III-B.)

and c, where v is a numeric variable of the system,c is
a constant rational number, andSum(v) and Avg(v) denote
the accumulated sum and average of the values ofv from
the beginning of the computation up to the current point of
time. For example, basic atomic assertions areSum(v) ≥ c

and Avg(v) ≥ c, and one can also have expressions like
Sum(v) ≥ 2Sum(u) + 5. A natural question that arises is
which temporal logics, if at all, can be extended, and with
which type of arithmetic expressions, while still allowingfor
a decidable model-checking problem.

On the positive side, we show that the EF logic (also known
as UB−) [7], which is the fragment of CTL with the EF,
AG, EX, and AX temporal operators, can indeed be extended,
with a rich class of arithmetic expressions (we would formally
define it below). We denote the extended logic by EFΣ. A
simple example of an EFΣ specification is given below.
Reliable system with energy constraint.Consider a system with
a Boolean variablep that is true when the system produces
a correct output, and is false when the output is erroneous.
The system is reliable if in every computation, the average of
correct output is always at least0.95. The system also has a
numeric variablev that denotes the energy level, and it must
not reach a negative value. The required properties can be
specified in EFΣ by: AG(Avg(p) ≥ 0.95 ∧ Sum(v) ≥ 0).

Moreover, we show that EFΣ can include a rich family
of arithmetic expressions: in the atomic assertionsγ ≥ γ′,
both sides can be linear combinations overSum(v), Avg(v),
andc, as long as there is no comparison between summation
and average. For example, we can haveSum(u)− Sum(v) >
3 ∧ Avg(u) ≥ 2Avg(v), but cannot haveSum(v) ≥ Avg(u).
Moreover, the atomic assertions can havecontrolled accumu-
lation, allowing to control when and how the accumulation
is done by means of regular expressions. This extension
is of special interest, as it allows to accumulate the time-
ticks of definable transactions. For example, one may specify
constraints on the average waiting time between a request and
a grant.

The decidability of the logic EFΣ has been a nice surprise
for us. Due to the value accumulation, the logic EFΣ has
“memoryful semantics”: When we unwind the Kripke struc-
ture to an infinite tree, the accumulation of values depends
on the path taken from the beginning of the computation (the
root of the tree) and the current state. Accordingly, different
occurrences of the same state may not agree on the set of
atomic assertions they satisfy, and hence may also disagree
on the satisfaction of formulas. Standard temporal logics have
a memoryless semantics, and model-checking algorithms for
them heavily depends on this fact. Handling of memoryful
logics is much more challenging. For the non-accumulative
setting, model checking of memoryful logics is possible thanks
to the fact that different histories can be partitioned intofinitely
many regular languages [8]. In our accumulative setting, there
is no bound on the accumulative values and no finite partition
is possible.

For that reason, the model-checking procedure is very
different from standard model-checking procedures, and is

based on a reduction to the validity problem of a Presburger
Arithmetic (PA) sentence. That is, given an EFΣ formula ϕ
and a Kripke structureK with numeric values, we generate
a PA sentenceθ, such thatK satisfiesϕ if and only if θ
is true. For coping with infinitely many computation paths,
we characterize the possiblesegmentsof the Kripke structure.
We show that there are finitely many segments and that it
suffices to formulate with PA a “proper computation path over
a segment”.

On the negative side, we show that EFΣ is, in a sense,
the maximal extendable logic. Extending a temporal logic
that has either of the temporal operators EG, EU, ER or
EW results in a logic whose model-checking problem is
undecidable. In particular, CTL and LTL cannot be extended.
The undecidability result applies already to an extension with
the atomic assertionSum(v) ≥ 0 or Avg(v) ≥ 0, and holds
even when restricting attention to systems with only Boolean
variables. The proof proceeds by a reduction from the halting
problem of counter machines. An open problem is whether a
logic with the, less standard, operators EFG and EGF (standing
for “exists a computation such that eventually-always and
always-eventually”) can be extended.

The logic EFΣ considersprefix accumulation, accumu-
lating a value from the beginning of the computation up
to the current point of time. It significantly enriches the
currently known energy-objectives and opens new directions
for specifications with average values and timed-transactions.
For path-accumulationassertions, in which the accumulation
is done along the entire, infinite, computation, referring to
the summation is usually useless, as it need not converge.
Researchers have thus considerdiscounted accumulation[9],
or refer to the limit-average of the accumulated values. We
do not know of a simple way to express the limit-average
by prefix-accumulation, and, at any rate, extending LTL with
prefix accumulation results in a logic whose model-checking
problem is undecidable. Other known extensions of LTL
also cannot capture limit-average (mean-payoff) objectives.
We therefore study also the extension of temporal logics
with the path-accumulation assertionsLimInfAvg(v) ≥ c

and LimSupAvg(v) ≥ c, for a numeric variablev and a
constant numberc, referring to long-run average of (the
infimum/suprimum of)v along an entire computation.

As additional good news we show that LTL can be extended
with the path-accumulation assertionsLimInfAvg(v) ≥ c and
LimSupAvg(v) ≥ c, denoted LTLlim, while allowing for a
decidable model checking. This is indeed a nice surprise, asa
small fragment of LTL extended with the prefix-accumulation
assertionAvg(v) ≥ c is undecidable. The extended logic
LTLlim significantly enriches the currently known mean-payoff
objectives. An example for a specification in LTLlim is given
below.

Long run happiness.Consider a system with Boolean variables
Wish and ComesTrue, and numeric variablesIncome and
Pleasure. A system is said to behappyif every wish eventu-
ally comes true or the long run average of both the income and

2

the pleasure are positive. The required properties can be spec-
ified by the LTLlim formula:G(Wish → F (ComesTrue)) ∨
LimInfAvg(Income) > 0 ∧ LimInfAvg(Pleasure) > 0.

Related work: Weighted automata over semirings (i.e.,
finite automata in which transitions are associated with weights
taken from a semiring) have been used to define cost functions,
called formal power series for finite words [10], [11] andω-
series for infinite words [12], [13], [14]. In [4], new classes
of cost functions were studied using operations over rational
numbers that do not form a semiring. In [5], deterministic
weighted automata with mean-payoff objectives were further
studied, providing closure under Boolean operations. Several
other works have considered quantitative generalizationsof
languages, over finite words [15], over trees [16], or using
finite lattices [17], [18]. The work of [19] gives an exten-
sion of MSO to capture weighted mean-payoff automata. All
these works consider weighted automata and their expressive
power for quantitative specification languages. The extension
of temporal logic with accumulation assertions to express
quantitative properties of systems has not been considered
before.

The model of turn-based games with mean-payoff and
energy objectives have been deeply studied in literature [20],
[21], [22], [23]. These works focus on the extension of energy
and mean-payoff objectives from the Kripke structure models
to game models. Our work, on the other hand, remains with a
(quantitative) Kripke structure, while extending the objective
by means of temporal logic.

II. T HE SETTINGS

In this section we define quantitative Kripke structures – our
model for systems with numeric variables, and introduce tem-
poral logics that can specify quantitative aspects of quantitative
Kripke structures. Assertions that relate to the current value of
a numeric variable, asv > 7, are of no interest as they can be
expressed in standard, Boolean, temporal logic, by referring
to the binary representation ofv. We are interested, instead,
in assertions likeSum(v) > 7, which refer to the accumulated
value of v from the beginning of the computation up to the
current time position. Such assertions are no longerω-regular.

Quantitative Kripke structure:In a standard, Boolean,
Kripke structure, the variables (atomic propositions) areas-
signed a Boolean value. Quantitative Kripke structures have
both Boolean and numeric variables, where the latter are
assigned rational numbers. Formally, aquantitative Kripke
Structureis a tupleK = 〈P, V, S, sin, R, L〉, with a finite set
of Boolean variablesP , a finite set of numeric variablesV , a
finite set of statesS, an initial statesin ∈ S, a total transition
relationR ⊆ S×S and a labeling functionL : S → 2P ×QV .

A computation of K is an infinite sequence of states
π = s0, s1, . . . such thats0 = sin and 〈si, si+1〉 ∈ R

for every i ≥ 0. We denote by inf(π) the of states that
the π visits infinitely often, that is inf(π) = {s ∈ S |
for infinitely many i ∈ N, we have thatπi = s}.

A quantitative Kripke structure may also have afairness
conditionα, added as the last element in its definition tuple.

For a Büchi fairness condition, we have thatα ⊆ S, and a
computationπ is fair if inf(π) ∩ α 6= ∅.

We denote the labeling (value) of a Boolean variablep and
of a numeric variablev in a states by [[p]]s ∈ {T, F} and
[[v]]s ∈ Q, respectively. We often talk about Kripke structures,
meaning quantitative ones.

Extended temporal logics:We consider two kinds of
assertions on accumulative values, for which the accumulation
is done either along a prefix of a computation or on the entire,
infinite, computation. LetV be a set of numeric variables.

• A prefix-accumulation assertion overV is of the form
γ ≥ γ′, whereγ andγ′ are linear arithmetic expressions
defined over the atomsc ∈ Q, and Sum(v) or Avg(v)
for v ∈ V . For example,Sum(v) ≥ 4, Avg(v) ≥ 2 1

2 and
Sum(v) ≥ 2Sum(u)+5. A single atomic assertion cannot
have bothSum() and Avg(), while different atomic-
assertions in the same formula can.

• A path-accumulation assertion overV is of the form
LimInfAvg(v) ≥ c or LimSupAvg(v) ≥ c, for v ∈ V

andc ∈ Q.

Note that prefix-accumulation assertions allow to compare
between two different variables, while path-accumulationas-
sertions do not.

We shall investigate the extension of both linear-time and
branching-time logics with prefix-accumulation assertions, and
the extension of LTL with path-accumulation assertions. For
example, the logic CTL extended with prefix-accumulation
assertions is denoted CTLΣ and has the following syntax.
Let P and V be finite sets of Boolean variables (atomic
propositions) and numeric variables, respectively.

• A CTLΣ formula is p ∈ P , a prefix-accumulation as-
sertion overV , ¬ϕ, ϕ1 ∧ ϕ2, EXϕ, EFϕ, EGϕ, or
ϕ1EUϕ2, for CTLΣ formulasϕ, ϕ1, andϕ2.

Of special interest would be the fragment of CTL with
the EF and EX temporal operators, in addition to the¬ and
∧ Boolean operators, known in the literature as the EF or
UB− logic [7]. We shall denote its extension with prefix-
accumulation assertions by EFΣ.

The logic LTL extended with path-accumulation assertions
is denoted LTLlim, and has the following syntax, again with
respect to setsP andV .

• An LTLlim formula is p ∈ P , a path-accumulation
assertion overV , ¬ϕ, ϕ1 ∧ ϕ2, Xϕ, Fϕ, Gϕ and
ϕ1Uϕ2, for formulasϕ, ϕ1 andϕ2.

The semantics of the extended logics is defined with respect
to the computation tree of a quantitative Kripke structure.For
the path quantifiers and the temporal operators, the semantics
is as in standard temporal logic. Thus, E stands for “exists
a computation”, A for “all computations”, X for “next”, F
for “eventually”, G for “always”, and U for “until”. Other
standard temporal operators that will be mentioned in the
sequel are R for “release” and W for “weak until”. For
the accumulation assertions, the semantics is defined below.
Note that, due to the value accumulation, the extended logics
have “memoryful semantics”, as opposed to the memoryless

3

semantics of standard CTL and LTL. This is why we define the
semantic with respect to the computation tree and not directly
with respect to the Kripke structure. We thus start with the
definition of trees and computation trees.

Given a finite setD of directions, aD-tree is a setT ⊆ D∗

such that ifx · d ∈ T wherex ∈ D∗ and d ∈ D, then also
x ∈ T . The elements ofT are callednodes, and the empty
word ε is the root of T . The prefix relation induces a partial
order≤ between nodes ofT . Thus, for two nodesx andy, we
say thatx ≤ y iff there is somez ∈ D∗ such thaty = x · z.
For everyx ∈ T , the nodesx ·d, for d ∈ D, are thesuccessors
of x. A node is aleaf if it has no successors. Apathof T is a
minimal setπ ⊆ T such thatε ∈ π and for everyy ∈ π, either
y is a leaf or there exists a uniqued ∈ D such thaty · d ∈ π.
For a setZ, aZ-labeledD-tree is a pair〈T, τ〉 whereT is a
D-tree andτ : T → Z maps each node ofT to an element in
Z.

A Kripke structureK induces acomputation tree〈TK, τK〉
that corresponds to the computations ofK. Formally (see
an example in Figure 1), for a Kripke structureK =
〈P, V, S, sin, R, L〉, we have that〈TK, τK〉 is a (2P × QV)-
labeledS-tree, wherestate(x) denotes the rightmost state in
a nodex of TK andτK(x) = L(state(x)).

We denote the labeling (value) of a Boolean variablep and
of a numeric variablev in a nodex by [[p]]x ∈ {T, F} and
[[v]]x ∈ Q, respectively.

We define the prefix-accumulation values of a numeric
variablev at a nodex of the computation tree as follows.

[[Sum(v)]]x =
∑

y≤x

[[v]]y

[[Avg(v)]]x =
[[Sum(v)]]x
|x|+ 1

The Sum and Avg functions can also be defined for a
Boolean variable, by viewing it as a numeric variable with
F = 0 andT = 1.

The limit-average value along an infinite computation path
is intuitively the limit of the average values of its prefixes.
However, these average values need not converge, thus a
standard solution is to consider their infimum and supremum.
We define the path-accumulation values of a numeric variable
v along a pathπ = x1, x2, . . . of the computation tree as
follows.

• [[LimInfAvg(v)]]π = lim
n→∞

inf{[[Avg(v)]]xi
| i ≥ n}

• [[LimSupAvg(v)]]π = lim
n→∞

sup{[[Avg(v)]]xi
| i ≥ n}

For example, for the computationπ = (s1s2)
ω of the

Kripke structure in Figure 1 we have that[[LimInfAvg(v)]]π
is the limit of inf{ 3

1 ,
−2
2 ,

1
3 ,

−4
4 ,

−1
5 ,

−6
6 ,

−3
7 ,

−8
8 , . . .} = −1,

which is also[[LimSupAvg(v)]]π . Note that the values of path-
accumulation assertions are indifferent to finite prefixes of π.
Thus, for all suffixesπ′ of π, we have that[[LimInfAvg(v)]]π =
[[LimInfAvg(v)]]π′ , and similarly forLimInfAvg. Accordingly,
the nesting of path-accumulation assertions in temporal oper-
ators does not add to the expressive power of LTLlim. We still
allow this nesting, as it enables more succinct formulas.

T

s3

¬p

v = 1

p

v = −5
Sum(v) = −2
Avg(v) = −1

p

v = 3
Sum(v) = 1
Avg(v) = 1

3

s1

p

v = 3
Sum(v) = 3
Avg(v) = 3

s3

¬p

v = 1
Sum(v) = 4
Avg(v) = 2

s3

K

s1

p

s2

p

v = −5

v = 3

s2

s1 s2

Fig. 1. A quantitative Kripke structureK and its computation-treeT .

III. T EMPORAL LOGICS WITH PREFIX ACCUMULATION

In this section we consider temporal logics extended by
prefix-accumulation assertions. The central question is which
of the standard temporal logics, if at all, can be extended while
still allowing for a decidable model-checking.

One may notice that prefix-accumulation takes us from the
“comfort zone” of finite state systems into the “hazardous”
zone of infinite state systems. Indeed, it is closely relatedto
counter machines and makes our paradigm especially close to
model-checking Petri-nets. Yet, while model checking Petri-
nets is undecidable for all relevant temporal logics [24], we
show that it is decidable for a quantitative Kripke structure
and a specification in the logic EFΣ. It also turns out that, in
a sense, the logic EF is the maximal one that can be extended
with prefix-accumulation.

In Section III-A, we show the decidability of the model-
checking problem for the logic EFΣ. In Section III-B, we
further extend EFΣ with assertions on controlled accumulation,
while keeping the above decidability. These assertions allow,
for example, to specify constraints on the average waiting time
between a request and a grant. On the other hand, we show
in Section III-C that adding prefix-accumulation assertions
to a temporal logic with any of the other standard temporal
operators (that is, EG, EU, ER, or EW) makes the model-
checking problem undecidable. In particular, extending CTL
and LTL makes them undecidable.

One may first observe that all the prefix-accumulation
assertions can be expressed by theSum(v) ≥ c assertion2:

Lemma 1. Consider a Kripke structureK and a specification
ϕ in a temporal logic with prefix-accumulation assertions. Itis

2The Sum ≥ c assertion can be switched to anAvg ≥ 0 assertion, by
setting an initial value ofc to v.

4

possible to obtain fromK andϕ a structureK′ and a specifi-
cationϕ′ such thatK′ differs fromK only in new numeric vari-
ables,ϕ′ differs fromϕ only in some of the prefix-accumulation
assertions, all the prefix-accumulation assertions inϕ′ are of
the formSum(v) ≥ c, andK |= ϕ iff K′ |= ϕ′.

Proof: Let u andv be numeric variables andc a rational
constant. We obtainK′ andϕ′ as follows.

• For an expressionSum(v) ± Sum(u), we add a new
variable v′ to K′ that is assigned the value[[v′]]s =
([[v]]s ± [[u]]s) in each states of the Kripke structure. We
then replaceSum(v)±Sum(u) by Sum(v′). An analogous
treatment is given toAvg(v)± Avg(u).

• We replace anAvg(v) ≥ Avg(u) assertion bySum(v) ≥
Sum(u).

• For aSum(v) ≥ Sum(u) assertion, we add a new variable
v′ to K′ that is assigned the value[[v′]]s = ([[v]]s − [[u]]s)
in each states of the Kripke structure. We then replace
Sum(v) ≥ Sum(u) by Sum(v′) ≥ 0.

• For an Avg(v) ≥ c assertion, we add a new variable
v′ to K′ that is assigned the value[[v′]]s = ([[v]]s − c)
in each states of the Kripke structure. We then replace
Avg(v) ≥ c by Sum(v′) ≥ 0.

It is easy to see that, in all nodes of the computation-tree,
the original assertions are valid iff the new ones are. Moreover,
since the computation-trees ofK andK′ are identical, up to the
new variables, the assertion-equivalence extends to formula-
equivalence in all temporal logics.

A. Decidability

We show the decidability of the model-checking problem for
the logic EFΣ. Given a Kripke structure and a specification, we
shall formulate their model-checking problem by a Presburger
arithmetic (PA) sentence, such that the sentence is true iffthe
Kripke structure satisfies the specification.

Presburger Arithmetic:In 1929, Mojżesz Presburger for-
malized the first order theory of the natural numbers with
addition, and showed that it is consistent, complete and
decidable [25].

A Presburger arithmetic (PA) formula is a first order formula
with the constants0 and1 and the binary function+. The PA
theory has the following axioms:

• ∀x. ¬(0 = x+ 1)
• ∀x. (x+ 1 = y + 1) → x = y

• ∀x. x+ 0 = x

• ∀x, y. (x+ y) + 1 = x+ (y + 1)

In addition, the PA theory has the induction scheme: For every
PA-formulaθ(x), we have that ifθ(0)∧∀x(θ(x) → θ(x+1)),
then∀y.θ(y)

The syntax of PA formulas can be extended to contain
inequality notions (≤,≥, <,>) and rational coefficients. For
example, having the statement∃x∀y 3

4x− 2y < 1
2 . The latter

can be translated to the sentence∃x∀y∃z ¬(z = 0)∧3x+z =
8y + 2, maintaining the original truth value.

The PA-formulation, in a glance:For convenience, we
shall view the Kripke structureK as having the numeric values
on the edges (transitions), rather than in the states. The edges
are namede1, e2, . . . , en, and the value of a variablev on an
edgeei is denotedvi.

We use the PA-variablesx1, x2, . . . , xn in correlation
with the edgese1, e2, . . . , en. Intuitively, a finite path π
of K induces an assignment to the PA-variables, describ-
ing the number of times that each edge is repeated in
π. Using these variables, we can translate, for example,
the EFΣ formula EF (Sum(v) ≥ 3) to the PA-formula
∃x1, x2, . . . , xn.

∑n
i=1 vixi ≥ 3. This follows the approach of

[26], where linear programming is used rather than Presburger
arithmetic.

For handling nested quantifications, there would be a new
set of PA-variables for every temporal quantifier, while the
PA-variables of the upper levels are added to the summation.
For example,EF (Sum(v) ≥ 3 ∧ ¬EF (Sum(u) = 0)) would
be translated to the PA-formula∃x1, x2, . . . , xn.

∑n

i=1 vixi ≥
3 ∧ ¬(∃y1, y2, . . . , yn.

∑n
i=1 ui(xi + yi) = 0).

The problem is that a valid assignment of the PA-variables
does not guarantee a valid computation of the Kripke structure
– the edge repetition need not match a connected path.

For handling path-connectivity, we define a “segment” of
the Kripke structure to be a triple, of a starting-state, ending
state, and a set of edges connecting between them. For every
segmentκ of K, we formalize in PA the assertion that “the
edge repetition corresponds to a connected path over the
segmentκ”. Namely, we assert that all the edges of the
segment are used, and no edge but them, as well as that the
number of times a state is entered is equal to the number of
times it is left, with the exception of the starting and ending
states. The latter assertion is an adjustment of Kirchhoff’s
circuit laws.

We then change, top to bottom, everyEF or EX sub-
formula into a disjunction of identical subformulas, each in
conjunction with a specific segment. The starting state of the
segments in an inner formula is taken to be the ending state
of the segment in the upper-level formula.

In the rest of this section, we formalize this PA-formulation
and prove its correctness.

Moving the numeric values to the edges:It is a common
practice to switch between the values of the states and the
edges, for example in the process of translating a Kripke
structure to an automaton. For convenience, we move the
numeric variables to the edges, while keeping the Boolean
variables in the states.

The translation (see Figure 2) adds a new state,s0, as the
new initial state, and a transition froms0 to the original initial
state. Every numeric variablev in a states is moved to all
the incoming edges ofs. The edges are namede1, e2, . . . , en,
and the value of a variablev on an edgeei is denotedvi.

Given a Kripke structureK and a specificationϕ, we
translateK to Shift(K) as above, and change the specification
ϕ to Shift(ϕ), referring to the next state. In the case of a linear-
time specification,Shift(ϕ) = Xϕ and with a branching-time

5

v3 = 1

¬p

v = 1

s2

u = −1

v4 = −2
u4 = 1

s1

p

v = −2
u = 1

K

¬p

s2
e3

u3 = −1

s0

e1

Shift(K)

v1 = −2

u1 = 1

s1

p
e2

e4

v2 = 1
u2 = −1

Fig. 2. The Kripke structureK and its equivalent structureShift(K), having
the numeric values on the edges.

specificationShift(ϕ) may beAXϕ or EXϕ (sinces0 has a
single successor, path quantification is not important).

Proposition 2. Consider a Kripke structureK and a temporal
logic specificationϕ. ThenK |= ϕ iff Shift(K) |= Shift(ϕ).

Segments:In our PA-formulation of the model-checking
problem, the PA-variables denote the number of times that
each edge of the Kripke structure is repeated in a satisfying
path. Yet, an arbitrary edge-repetition need not correspond to
a connected path. For formalizing this constraint in PA, we
define the “segments” of a Kripke structure. A segment is
a triple, of a starting-state, ending state, and a set of edges
connecting between them.

Formally, for a pathp (not necessarily simple) in a directed
graph, we denote byEdges(p) the set of edges that appear in
p.

Definition 3. Given a Kripke structureK with statesS and
edgesE, we define asegmentof K to be a triple 〈a, b, C〉
with a starting statea ∈ S, an ending stateb ∈ S, and a set
of edgesC ⊆ E, such that there is a pathp from a to b with
Edges(p) = C. Note thatC may be the empty set.

Since every edge appears at most once in every segment,
a Kripke structure has finitely many segments. For example,
the structureShift(K) of Figure 2 has the following segments:
κ1 = 〈s0, s0, ∅〉
κ2 = 〈s0, s1, {e1}〉 κ3 = 〈s0, s1, {e1, e2, e4}〉
κ4 = 〈s0, s1, {e1, e2, e3, e4}〉 κ5 = 〈s0, s2, {e1, e2}〉
κ6 = 〈s0, s2, {e1, e2, e3}〉 κ7 = 〈s0, s2, {e1, e2, e3, e4}〉
κ8 = 〈s1, s1, ∅〉 κ9 = 〈s1, s1, {e2, e4}〉
κ10 = 〈s1, s1, {e2, e3, e4}〉 κ11 = 〈s1, s2, {e2}〉
κ12 = 〈s1, s2, {e2, e3}〉 κ13 = 〈s1, s2, {e2, e3, e4}〉
κ14 = 〈s2, s1, {e4}〉 κ15 = 〈s2, s1, {e3, e4}〉
κ16 = 〈s2, s1, {e2, e3, e4}〉 κ17 = 〈s2, s2, ∅〉
κ18 = 〈s2, s2, {e3}〉 κ19 = 〈s2, s2, {e2, e3, e4}〉

PA-formulation of a connected path:Equipped with the
notion of a segment, we may formalize in PA the assertion
that “an edge repetition-set corresponds to a connected path”
by a disjunction of the assertions “an edge repetition-set
corresponds to a connected path on a segmentκ” over all
relevant segments. For each segment, the corresponding PA-
formula will be an adjustment of Kirchhoff’s circuit laws.

Definition 4 (PA-formulation of a path). Consider a Kripke
structureK with statesS and edgesE = {e1, e2, . . . , en}. We
denote the set of indices of the incoming edges to a states ∈ S

by In(s) and of the outgoing edges byOut(s). For a segment
κ = 〈a, b, C〉 of K, we define its PA-formula,ψκ, to be the
conjunction of the following formulas, over the PA-variables
x1, x2, . . . , xn:

• For everyi such thatei ∈ C, the formulaxi ≥ 1.
• For everyj such thatej ∈ E \ C, the formulaxj = 0.
• If a = b (i.e. a cycle) then:

– For every states ∈ S:
∑

i∈In(s)

xi =
∑

j∈Out(s)

xj .

• If a 6= b (i.e. not a cycle) then:

– For everys ∈ S \ {a, b}:
∑

i∈In(s)

xi =
∑

j∈Out(s)

xj .

– The formula
∑

i∈Out(a)

xi = (
∑

j∈In(a)

xj) + 1.

– The formula
∑

i∈In(b)

xi = (
∑

j∈Out(b)

xj) + 1.

For example, the PA-formula of the segment
κ = 〈s0, s2, {e1, e2, e3}〉 of the structure Shift(K) of
Figure 2 isψκ =

x1 ≥ 1 ∧ x2 ≥ 1 ∧ x3 ≥ 1 ∧ x4 = 0 (edges)
∧ x1 + x4 = x2 (internal states)
∧ x1 = 0 + 1 ∧ x3 + x4 = x2 + x3 − 1 (start and end)
It is easy to see that the edge repetition-set,x1, x2, . . . , xn,

of a connected path over a segmentκ satisfies the PA-formula
∃x1, x2, . . . , xn. ψκ. Furthermore, the opposite is also true,
as shown below. The reason is that Kirchhoff’s circuit laws
guarantee a set of proper cycles, while the requirement to
visit all the segment-edges guarantees that these cycles can
be connected.

Lemma 5. Consider a segmentκ = 〈a, b, C〉 of a Kripke
structureK with statesS and edgesE = {e1, e2, . . . , en}.
Then, there is a pathp from a to b with Edges(p) = C

iff the PA-formula,∃x1, x2, . . . , xn. ψκ, as defined above, is
valid. Moreover, every solutionx1, x2, . . . , xn of the formula
corresponds to the number of times that each edgeei is
repeated in a pathp, and vice versa.

Proof: Given a pathp from a to b overC, it is easy to
see that the edge repetitions ofp provide a solution to the
PA-formula.

As for the other direction, we will iteratively generate a
pathp from the formula solutionx1, x2, . . . , xn. We call the
PA-variablexi the “counter of the edgeei”, and decrease it
by 1 once we useei.

• Step I - the skeleton path.

1) Start from the statea.
2) Arbitrarily choose an edgeei from the current state,

whose counterxi is not 0. Decreasexi by one.
3) Continue with step (2) above with respect to the

ending state ofei, until reaching a state for which
all the outgoing edges have zeroed counters.

• Step II - the added cycles.
If there are still positive counters:

6

1) Choose a states in p that has an outgoing edge with
a positive counter.

2) Continue froms, as in step I.2.
3) The zeroed-counter state, which we stop on, must

bes. Add this cycle as a loop in the first occurrence
of s in p.

4) Repeat step II until all edge-counters are zeroed.

We should prove the following claims:

• Step I ends inb.
• Step II.1 is always possible when there are positive

counters.
• Step II always produces cycles.

The correctness of the first and third claims follows from
the In-Out edge counting. As for the second claim, lets′ be
the source state of an edge with a positive counter. Sinces′ is
reachable froma along edges in the segment-edgesC, there
is some corresponding pathp′ = a → s′1 → s′2 → . . . s′, all
of whose edges are inC. Let e be the first edge inp′ with a
positive counter. We will chooses to be the source-state ofe.

It is left to show thats ∈ p. If s = a we are done. Otherwise,
since all the edges ofp′ must be used at least once, and the
edge befores has a zeroed counter, we know that it has been
used, implying thats belongs to the generated pathp.

Translating temporal logic into Presburger arithmetic:
We can now describe the formulation of the model-checking
problem forK andϕ by means of a PA-formula. We do so
by defining a recursive procedure,Trans(ξ, s, Y), that gets as
input an EFΣ formulaξ, a states of Shift(K), and a finite set
Y of n-tuples of PA-variables, and returns a PA formula that is
valid iff the states of Shift(K) satisfiesξ under the assumption
that s has been reached along a path described byY (we
formalize this below). Accordingly, model checking ofϕ in
K is reduced to checking the validity ofTrans(Shift(ϕ), s0, ∅).

Consider a setY of n-tuples of PA-variables, sayY =
{〈x11, . . . , x

1
n〉, . . . , 〈x

k
1 , . . . , x

k
n〉}. We write

∑

Yi as a shortcut
for

∑k

j=1 x
j
i . In the procedure, we use the symbolκ to denote

a segment ofShift(K), andψκ to denote its PA-formulation,
as in Definition 4. All the PA-quantifications use new PA-
variables.

The formula Trans(ξ, s, Y) is defined according to the
structure ofξ as follows.

• Trans(¬ξ, s, Y) = ¬Trans(ξ, s, Y).
• Trans(ξ1 ∧ ξ2, s, Y) = Trans(ξ1, s, Y) ∧ Trans(ξ2, s, Y).
• Trans(p, s, Y) = [[p]]s, for an atomic propositionp.
• Trans(EFξ, s, Y) = ∃x1, . . . , xn.

∨

κ=〈s,b,C〉

ψκ ∧

Trans(ξ, b, Y ∪ 〈x1, . . . , xn〉).
• Trans(EXξ, s, Y) = Trans(EFξ, s, Y) ∧

∑n

i=1 xi = 1. 3

• Trans(Sum(v) ≥ c, s, Y) =
∑n

i=1(vi
∑

Yi) ≥ c, where
vi is the value of the Kripke-variablev on the edgeei.

We can now useTrans for the decidability of the model-
checking problem.

3The disjunction in the formulaTrans(EFξ, s, Y) may be restricted to
segments with a single edge, or alternatively be replaced with a straightforward
disjunction on the outgoing edges ofs.

Theorem 6. Given a quantitative Kripke structureK and a
specificationϕ in EFΣ, it is decidable to check whetherK
satisfiesϕ.

Proof: We prove that the PA-formula
Trans(Shift(ϕ), s0, ∅) is valid iff Shift(K) |= Shift(ϕ).
By Proposition 2, the latter holds iffK |= ϕ. The proof
proceeds by an induction on the nesting level ofShift(ϕ).

For a single temporal operator and a single segment, the
translation correctness follows from Lemma 5. By the disjunc-
tion on all the segments that start in the designated state, we
get the correctness with respect to the whole Kripke structure.

As for the induction step, setting the starting state of the
inner segment to be the ending state of the upper level ensures
a correct path, while the addition of the PA-variables of the
upper level to the summation in the inner level ensures a proper
calculation of the accumulated variable values.

Note that model checking an EFΣ formula is also decidable
with respect to a quantitative Kripke structure with a fairness
condition. The reason is that a fairness condition only relates
to computation suffixes, while an EF formula only relates to
computation prefixes. The single intersection-point between
the two is the liveness-property of the prefix states. Indeed,
consider a Kripke structureK with statesS and a fairness
conditionα. Let D ⊆ S be the “dead-end states” ofK, from
which no computation ofK satisfiesα. Consider the unfair
Kripke structureK′ over the restriction ofK to S \D. Then,
for an EFΣ formula of the formEFξ (or EXξ), one can see
thatK has a fair computation that satisfiesEFξ iff K′ has a
computation that satisfiesEFξ.

Complexity: The complexity of the construction is
roughly quad-exponential in the size of the Kripke structure.
The best known algorithm for solving a PA formula is triple-
exponential, while our PA formula might be exponential in the
size of the Kripke structure. The length of the PA formula is
O(2n×d+m) for a Kripke structure withn states and an EFΣ

formula of lengthm and nesting-leveld of EF operators.
A lower bound for the required complexity is an open

problem. Specifically, one may seek an algorithm that uses
a weak version of Presburger arithmetic, as integer or linear
programming, and try to avoid the brute-force segmentation
of the Kripke structure.

B. Controlled Accumulation

One may wish to have some control on when and how the
accumulation is done, in order, for example, to make assertions
on the average waiting time between a request and a grant.
For the latter, we need the accumulative-sum of the time-ticks
between the requests and their corresponding grants, divided
by the number of such request-grant transactions.

Viewing the period between a request and a grant as a
“transaction”, one may wish to further generalize the accu-
mulation with respect to transactions. For example, handling
discontinuous transactions, speaking about their averagecost,
and setting different importance-values to their different oc-
currences.

7

All that, and more, can be done by adding the follow-
ing controlled accumulationatomic-assertion to the logic:
cAvg(u, r1, v, r2) ≥ c, for a numeric variableu, a positive
numeric variablev, regular expressionsr1 and r2 over 2P ,
and a constantc. The value of a controlled-average at a node
x of the computation tree is defined as follows (we user(y)
to indicate that the prefixy is a member in the language of
the regular expressionr).

[[cAvg(u, r1, v, r2)]]x =

∑

(y≤x | r1(y))
[[u]]y

∑

(y≤x | r2(y))
[[v]]y

.

Intuitively, r1 indicates whether the current point of time
is relevant to the transaction, according to which we sum-up
the costsv, while r2 indicates a new transaction-occurrence.
The value ofu indicates the importance of the transaction-
occurrence, denoting its influence on the averaging.

Note that the controlled average is undefined before the
first true-valuation ofr2. Indeed, there is no meaning to a
transaction-average before the first transaction-occurrence.

Controlled-average can obviously express standard summa-
tion and averaging. Indeed, for all nodesx, we have that

[[Sum(u)]]x = [[cAvg(u, T, 1, “First computation step”)]]x
[[Avg(u)]]x = [[cAvg(u, T, 1, T)]]x

For example, the average-waiting time between a request
(denotedp) and a grant (denotedq) over an alphabetΣ can
be defined by:cAvg(1, r1, 1, r2), where r1 = Σ∗p(Σ \ q)∗

describes all prefixes with a request that is not yet granted,
and r2 = (ε + Σ∗q)(Σ \ p)∗p) describes all prefixes in
which a request that needs a grant has been issued. Thus,
cAvg(1, r1, 1, r2) is the sum of the waiting durations divided
by the number of requests.

Decidability: We show that adding controlled-average
assertions to the logic EFΣ preserves the decidability of the
model-checking problem.

We first reduce the problem to model checking assertions
of the form cAvg(u, p1, v, p2) ≥ c, for Boolean variablesp1
and p2. The semantics is the expected one: the values of
u and v are taken into an account only in states in which
p1 and p2 are valid, respectively. In order to talk about
p1 and p2 rather thanr1 and r2, we refer to the product
K×A1 ×A2 of the Kripke structureK and the deterministic
finite automataA1 andA2 for r1 andr2, in which p1 andp2
are true in the accepting states ofA1 and A2, respectively.
Note that sinceA1 andA2 are deterministic, then for every
nodex in the computation tree ofK, there are unique states
of A1 and A2 that correspond tox, which we denote by
A1(x) and A2(x), respectively. Now, it is easy to see that
[[cAvg(u, r1, v, r2)]]x, for a nodex in the computation tree
of K is equal to [[cAvg(u, p1, v, p2)]]〈x,A1(x),A2(x)〉 in the
computation tree ofK ×A1 ×A2. Accordingly, it is enough
to show the decidability of controlled-accumulation assertions
that use Boolean variables instead of regular expressions.

Now, a controlled-average assertion with Boolean variables
p and q, instead of regular expressions, can be reduced to

an assertion of the formSum(v) ≥ 0, as follows. Consider
an assertioncAvg(u, p, v, q) ≥ c. We define a new numeric
variablev′ with the following value (for all statess):

[[v′]]s =









0 if [[p]]s = F and [[q]]s = F

−cv if [[p]]s = F and [[q]]s = T

u if [[p]]s = T and [[q]]s = F

u− cv if [[p]]s = T and [[q]]s = T

Proposition 7. Consider a Kripke structureK with a numeric
variable u, a positive numeric variablev and Boolean vari-
ablesp andq. LetK′ be a Kripke structure identical toK, up
to having a new numeric variablev′, defined as above, for a
constant numberc. Then, for every nodex of the computation
tree ofK′, we have thatcAvg(u, p, v, q) ≥ c iff Sum(v′) ≥ 0.

Proof: We have that:
[[cAvg(u, r1, v, r2)]]x ≥ c iff
∑

(y≤x | [[p]]y)[[u]]y∑
(y≤x | [[q]]y)[[v]]y

≥ c iff
∑

(y≤x | [[p]]y)
[[u]]y ≥ c(

∑

(y≤x | [[q]]y)
[[v]]y) iff

∑

(y≤x | [[p]]y)
[[u]]y −

∑

(y≤x | [[q]]y)
c[[v]]y ≥ 0 iff

∑

y≤x v
′ ≥ 0 iff

[[Sum(v′)]]x ≥ 0.

C. Undecidability

We show that the model-checking problem for extended
logics that have the temporal operators EG or EU (or their
duals, AF or AR) is undecidable. This implies the undecid-
ability of the extension of all temporal logics that includeor
can be translated to these operators. In particular, the model-
checking problems for the extensions of CTL* [27], LTL [28],
RTL [29], CTL [30], STL [31], UB [32], and EG [32] are all
undecidable.

The proof is by a reduction from the halting problem of
counter machines. Given a counter machineM, we construct
a Kripke structureK and a specificationϕ such thatK satisfies
ϕ iff M halts. The proof goes along similar lines to those
used for proving the undecidability of model-checking Petri
nets [24].

The intuitive explanation:A quantitative Kripke structure
has the flavor of a counter machine, in the sense that the
states correspond to the counter machine command-lines and
the accumulated values to the counters. With two numeric
variables, it is possible to mimic two counters. The crucial
difference is that a counter machine has a conditional-jump
command, in which it can check the counter values and branch
accordingly. In contrast, the transitions of a Kripke structure
are not guarded by the accumulated values.

Equipped with a suitable specification language, we can
address this difference as follows. The Kripke structure uses
its nondeterminism and has two transitions from each state
associated with a conditional jump. These transitions can be
taken regardless of the accumulated values. The specification,
however, would limit attention to computations of the Kripke
structure in which transitions are taken properly. As we show,

8

this can be done using theG (Always) orU (Until) temporal
operators. Below we describe the reduction in detail.

Counter machines:An n-counter machine is a sequence
of uniquely-labeled commands, involvingn counters. The
counters are initialized to non-negative integers, or equiva-
lently, all are initialized to zero and their desired initial value
is set by the first machine commands. There are five command
types, as demonstrated in Example 8.

Example 8. A machine with two counters,x and y. The
machine adds the value ofx to y and nullifiesx.

l1. if x = 0 then goto l5 else goto l2
l2. x := x− 1

l3. y := y+ 1

l4. goto l1
l5. halt

We refer to commands of the form
if x = 0 then goto l5 else goto l2 as x-jumps. We
assume that the machine never reaches a line of the form
x := x− 1 when the counterx is zero. Since we can add
a guarding x-jump before reducing the value ofx, the
assumption does not lose generality.

The reduction: Given a two-counter machineM , we
construct a Kripke structureK and a specificationϕ, such that
K satisfiesϕ iff M does not halt. The values of the Kripke
structure variables are from{0, 1,−1} and the specification
only uses the EG modality. The specification may either relate
to the accumulative sum or to the accumulative average ofK’s
variables. An illustration of the reduction is given in Figure 3,
with respect to the counter machine of Example 8.

For a two-counter machineM with n lines and the
countersx and y, we define the Kripke structureK =
〈P, V, S, sin, R, L〉 as follows.

• P = {halt, xz, xp, yz, yp}. The latter variables are used
for denoting whether a counter, for examplex, should be
zero (xz), or positive (xp), in a proper computation.

• V = {u, v}, corresponding to thex and y counters of
M, respectively.

• S = {si | li ∈M} ∪ {s′i, s
′′
i | li is a conditional jump}.

• sin = s1.
• R = {〈si, s′i〉, 〈si, s

′′
i 〉, 〈s

′
i, sj〉, 〈s

′′
i , sm〉 |

li = if x = 0 then goto lj else goto lm}
∪ {〈si, si+1〉 | li ∈ {x := x+ 1, x := x− 1,

y := y+ 1, y := y− 1}}
∪ {〈si, sj〉 | li = goto lj}
∪ {〈si, si〉 | li = halt}.

Thus, the transitions follow the control ofM, where
each of the jumps in a conditional jump commandli
is divided into two transitions, visiting the intermediate
statess′i (in case the jump is according to the case
x = 0) or s′′i (in case the jump is according to the case
x 6= 0).

• L: All values areF or 0, except for every1 ≤ i ≤ n:

s4

v = 1

u = −1

s5

xp

s′
1

s′′
1

s1

xz

s2

halt

s3

Fig. 3. The Kripke structure corresponding to the counter machine of
Example 8.

[[u]]si = 1 if li = x := x+ 1;
[[u]]si = −1 if li = x := x− 1;
[[v]]si = 1 if li = y := y+ 1;
[[v]]si = −1 if li = y := y− 1;

[[xz]]s′
i

= T if li is anx jump;
[[xp]]s′′

i
= T if li is anx jump;

[[yz]]s′
i

= T if li is a y jump;
[[yp]]s′′

i
= T if li is a y jump;

[[halt]]si = T if li = halt.

Consider the following formulas.

ψProper = (xz → Sum(u) = 0) ∧ (xp → Sum(u) 6= 0) ∧

(yz → Sum(v) = 0) ∧ (yp → Sum(v) 6= 0).

ϕ = EG(ψProper ∧ ¬halt).

ϕ′ = ψProper EU halt.

Note that the specification can be equivalently defined using
Avg() instead ofSum().

Lemma 9. Given a counter machineM, let K, ϕ, andϕ′ as
defined above. Then,M does not halt iffK |= ϕ iff K 6|= ϕ′.

Proof: The counter machineM is deterministic, having
a single run. A computation ofK simply follows the run
of M, except for the conditional jumps, in which it has
nondeterminism. It may either follow the run ofM (that is,
in statessi of anx jump, branch tos′i or s′′i according to the
value ofx) or violate it (that is, branch not according to the
value of x). Note that all the computations ofK violate the
run of M, except for exactly one computationr that follows
it. Hence, all computations ofK, except forr, do not satisfy
ϕ, while r satisfiesϕ iff M does not halt. Also,r satisfiesϕ′

iff M halts.
Since theG operator can be expressed by theW (Weak

Until) operator, and similarly forU andR (Release), Lemma 9

9

halt

p, q
¬p,¬q

s′
1 s′′

1

xp

¬p,¬q
xz

s′
2

¬p,¬q

s3

p, q

s′
3

¬p, q

p, q

s4

¬p,¬q

s′
4

s5

s1

s2

¬p, q

Fig. 4. The Boolean Kripke structure corresponding to the counter machine
of Example 8.

implies undecidability also for theEW andER modalities.
Using negation, we get undecidability also for the extension of
logics with theAF , AR, AR, andAW modalities. It follows
that the decidability result we have seen in Section III-A
for a logic with the modalitiesEF and EX is maximal.
We conclude that extending all the standard temporal logics,
except for the EF logic, makes the model-checking problem
undecidable.

Corollary 10. The model-checking problem is undecidable for
the temporal logics CTL⋆, LTL , RTL, CTL, STL, UB, and EG,
extended by the atomic assertionSum(v) ≥ c.

Boolean Kripke structure:Our setting considers a quan-
titative Kripke structure and a specification over its accumu-
lated values. One may consider a possibly simpler question,
concerning a Boolean Kripke structure and a specification over
the average of truth values. For an atomic propositionp, let
Avg(p) denote the average of truth values ofp up to the current
point of time. We can then have specifications with new atomic
assertions, likeAvg(p) ≥ 1

2 .
Is the model checking of such a specification decidable?

No. It is undecidable by a simple reduction from our setting.
Instead of using the numerical variablesu andv with values
{1, 0,−1}, we can use the atomic propositionsp and q, and
represent the numeric values by−1 = FF, 0 = TF and1 = TT.
The Boolean Kripke structure that corresponds to the machine
in Example 8 is shown in Figure 4, andψProper is adjusted
as follows.

ψProper = (xz → Avg(p) =
1

2
) ∧ (xp → Avg(p) 6=

1

2
) ∧

(yz → Avg(q) =
1

2
) ∧ (yp → Avg(q) 6=

1

2
).

IV. LTL WITH PATH ACCUMULATIONS

In this section, we show the decidability of model check-
ing a quantitative Kripke structure and a specification given
by an LTLlim formula (an LTL formula extended by path-
accumulation assertions, as defined in Section II). An example
of such an extended formula is:

FG(q) → ((LimSupAvg(u) = 5) ∨Gp ∧ LimInfAvg(v) > 4).

Given an LTLlim formulaψ, we shall consider its negation
ϕ = ¬ψ, and check whether the given Kripke structureK has
a computation that satisfiesϕ. We do it as follows:

• Translatingϕ toϕ′ = ϕ1∨ϕ2∨. . .∨ϕn, such that eachϕi

is of the formχ∧ξ, whereχ is a Boolean combination of
limit-average assertions andξ is a standard LTL formula.

• For each disjunctχ ∧ ξ, checking whetherK has a
computation that satisfiesξ∧χ. We do this by translating
ξ to a nondeterministic Büchi automaton (NBW)A [33]
and checking whether the productK × A, which is a
quantitative Kripke structure with a fairness condition,
has a fair computation that satisfies the limit-average
formulaχ.

Below we describe the model-checking procedure in detail
and prove its correctness.

Detaching the limit-average assertions:Consider an
LTLlim formulaϕ with n limit-average assertions,θ1, . . . , θn.
For bi ∈ {T, F}, we useϕ(b1, . . . , bn) to denote the LTL
formula obtained formϕ by replacing all occurrences of the
assertionθi by the truth valuebi. Recall that path-accumulation
assertions are interpreted with respect to entire paths andtheir
value is the same in all the suffixes of a path. Therefore, for an
LTLlim formulaϕ with n limit-average assertions,θ1, . . . , θn,
the LTLlim formulaϕ′ defined below is equivalent toϕ.

ϕ′ = [θ1 ∧ θ2 ∧ . . . ∧ θn ∧ ϕ(T, T, . . . , T)]

∨ [¬θ1 ∧ θ2 ∧ . . . ∧ θn ∧ ϕ(F, T, . . . , T)]

∨
...

∨ [¬θ1 ∧ ¬θ2 ∧ . . . ∧ ¬θn ∧ ϕ(F, F, . . . , F)]

Note that in the formulaϕ′, each disjunct is a conjunction of
a standard LTL formula and a Boolean combination of limit-
average assertions. We denote the latter as alimit-average
formula.

Now, since we check for the existence of a computation
that satisfiesϕ, each disjunct ofϕ′ can be checked separately.
Therefore, we should only solve the problem of deciding
whether there is a computation satisfyingχ ∧ ξ for a a limit-
average formulaχ and a standard LTL formulaξ. Before de-
scribing the solution, we recall the relevant theory of automata
on infinite words.

A nondeterministic Büchi automaton (NBW, for short) is
A = 〈Σ, Q, qin, δ, α〉, whereΣ is the input alphabet,Q is a
finite set of states,qin ∈ Q is an initial states,δ : Q×Σ → 2Q

is a transition function, andα ⊆ Q is a set of accepting states.
A run r = r0, r1, · · · of A on a wordw = w1 · w2 · · · ∈ Σω

10

is an infinite sequence of states such thatr0 = qin, and for
every i ≥ 0, we have thatri+1 ∈ δ(ri, wi+1). The runr is
acceptingiff inf (r) ∩ α 6= ∅. An automaton accepts a word if
it has an accepting run on it. The language of an automaton
A, denotedL(A), is the set of words thatA accepts. Given
an LTL formula ξ over a setP of atomic propositions, it is
possible to translateξ to an NBWAξ over the alphabet2P .
For every wordw ∈ (2P)ω, the NBW Aξ has an accepting
run onw iff a computation that is labeledw satisfiesϕ [33].

Consider a Kripke structureK = 〈P, V, S, sin, R, L〉 and
the NBW Aξ = 〈2P , Q, qin, δ, α〉. We define their prod-
uct B = K × Aξ as the fair Kripke structureB =
〈∅, V, S×Q, 〈sin, qin〉, R′, L′, S×α〉, whereR′(〈s, q〉, 〈s′, q′〉)
iff R(s, s′) andq′ ∈ δ(q, [[P]]s), andL is such that for every
v ∈ V, s ∈ S, andq ∈ Q, we have[[v]]〈s,q〉 = [[v]]s.

Checking for a fair computation with limit-average prop-
erties: Given a limit-average formulaχ and quantitative
Kripke structureK with a Büchi fairness condition, we check
whether K has a fair computation that satisfiesχ . The
problem for Kripke structures without fairness was solved in
[5]4 For extending the technique there to Kripke structures
with fairness, we first need the following lemma. It intuitively
shows that inserting infinitely, but negligibly, many constant
values to a computation does not change its limit-average
values.

Lemma 11. Consider an infinite computationπ = x1, x2, . . .

and a finite computationµ = y1, y2, . . . , yk with a numeric
variable v bounded by a constantc (that is, xi ≤ c and
yj ≤ c for all i ≥ 1 and 1 ≤ j ≤ k). Let π′ be the infinite
computation obtained fromπ by inserting µ at positions
{2i | i ∈ N}. Then, [[LimInfAvg(v)]]π = [[LimInfAvg(v)]]π′

and [[LimSupAvg(v)]]π = [[LimSupAvg(v)]]π′ .

Proof: Let π′ = zi, z2, z3, For showing thatπ and
π′ have the same limit-average values, we define a surjective
mappingρ between the positions ofπ′ andπ, and show that
[[v]]zi − [[v]]xρ(i)

converges to0.
We denote the range of a functionf by range(f) and define

the functionsMove : N → N, Next : N → N andρ : N → N

as follows.

Move(j) = j + k · |{2i | i ∈ N and2i ≤ j}|;

Next(j) = min{i | i ∈ range(Move) and i ≤ j}; and

ρ(j) = Move−1(Next(j)).

Intuitively, every position ofπ′ that originated inπ is
mapped byρ to its original position inπ, while a position
of π′ that originated inµ is treated as the next position ofπ′

that originated inπ.
For showing thatπ and π′ have the same limit-average

values of v, we need to show that thelim
j→∞

∑j

0[[v]]zj
j

−
∑ρ(j)

0 [[v]]xρ(j)

ρ(j) = 0. Indeed, for everyj ∈ N we have that

4The paradigm in [5] is different from ours, as the limit-average formula
there constitutes the acceptance conditions for the automata.

∑j

0[[v]]zj
j

−
∑ρ(j)

0 [[v]]xρ(j)

ρ(j) ≤ c(j−ρ(j))
ρ(j) , which converges to0.

We can now show how to adjust the emptiness algorithm
of [5] for handling the Büchi fairness condition.

Lemma 12. Consider a quantitative Kripke structureB with
a Büchi fairness conditionα. There is an algorithm to check
whetherB has a fair computation that satisfies a limit-average
formulaχ.

Proof: In [5], the authors describe an algorithm to check
whether a Kripke structureK (without fairness) has a compu-
tation that satisfies a limit-average formulaχ. The algorithm
is based on a procedureComponentCheck(M,χ), which is
called in over every reachable maximally strongly component
M of K. It is shown thatComponentCheck(M,χ) = T

iff there is a computation ofM that satisfiesχ. Since
[[LimInfAvg(v)]]π and[[LimSupAvg(v)]]π , are indifferent to any
finite prefix of π, it follows that K has a computation that
satisfiesχ iff some componentM of K has such a computation
[5].

We claim thatB has a fair computation satisfyingχ iff B
has a maximally strongly componentM such thatM ∩α 6= ∅
andComponentCheck(M,χ) = T.

Obviously, if B has no such component, then no com-
putation of B can satisfy bothα and χ. As for the other
direction, assume that there is a componentM with a state
s ∈M ∩α, such thatComponentCheck(M,χ) = T. Let π be
a computation ofB, such that inf(π) ⊆ M andπ satisfiesχ.
If s ∈ inf(r) then we are done. Otherwise, lets′ be a state in
inf(r), and letµ be a finite cycle inM that visits boths and
s′.

Consider the computationπ′ of B that is derived fromπ
by insertingµ at the positions{2i | i ∈ N}. We have that
π satisfies the Büchi conditionα, as it visitss ∈ α infinitely
often. In addition, by Lemma 11, the limit-average values of
π′ are the same as those ofπ, thusπ′ also satisfies the limit-
average formulaχ, and we are done.

We can thus conclude:

Theorem 13. The model-checking problem for LTLlim is
decidable.

Note that model checking an LTLlim formula is also de-
cidable with respect to a quantitative Kripke structure with a
fairness condition. The reason is that the algorithm already
handles a Büchi condition, derived from the LTL formula,
which can be combined with the fairness condition of the
Kripke structure. Also, since the model-checking procedure
anyway translates the temporal-logic component to an NBW,
we can easily extend it to handle LTLlim with a regular layer
– one in which the path formulas may also contain regular
expressions.

Complexity: The complexity of the construction is
roughly exponential in the size of the Kripke structure, doubly
exponential in the LTL formula, and triply exponential in the
number of numeric variables. More formally, for a Kripke
structure withn states and an LTL formula of lengthm with k

11

numeric variables, the construction-complexity is bounded by
O((2n×2m)k). It conveys the following complexities:2m for
translating an LTL formula to a Büchi automaton,n× 2m for
the product of the Kripke structure and the Büchi automaton,
2n×2m for the number of simple cycles in the product, and
(2n×2m)k for solving the convex-hull intersection questions,
involving 2n×2m points of dimensionk.

A lower bound for the required complexity is an open
problem. Specifically, one may seek a construction that does
not rely on the simple cycles of the Kripke structure, for
removing the exponential dependency in the Kripke structure.

Acknowledgment. We thank Dejan Nickovic for stimulating
discussions on controlled accumulation.

The research was supported by the FWF NFN Grant
No S11407-N23 (RiSE), the EU STREP Grant COMBEST,
the ERC Advanced Grant QUAREM, the EU NOE Grant
ArtistDesign, and a Microsoft Faculty Fellowship.

REFERENCES

[1] R. Alur and T. Henzinger, “A really temporal logic,”Journal of the
ACM, vol. 41, no. 1, pp. 181–204, 1994.

[2] C. Courcoubetis, R. Alur, and D. Dill, “Model-checking for probabilistic
real-time system,” inProc. of ICALP 91, ser. LNCS. Springer, 1991.

[3] M. Droste, W. Kuich, and H. Vogler, “Monograph in theoretical
computer science: Eatcs series,” inHandbook of Weighted Automata.
Springer, 2009.

[4] K. Chatterjee, L. Doyen, and T. A. Henzinger, “Quantitative languages,”
in Proc. of CSL, ser. LNCS 5213. Springer, 2008, pp. 385–400.

[5] R. Alur, A. Degorre, O. Maler, and G. Weiss, “On omega-languages
defined by mean-payoff conditions,” inFOSSACS, ser. LNCS, vol. 5504,
2009, pp. 333–347.

[6] R. Bloem, K. Chatterjee, T. A. Henzinger, and B. Jobstmann, “Better
quality in synthesis through quantitative objectives,” inCAV, ser. LNCS,
vol. 5643, 2009, pp. 140–156.

[7] Z. Manna and A. Pnueli, “The modal logic of programs,” inICALP, ser.
LNCS, vol. 71, 1979, pp. 385–409.

[8] O. Kupferman and M. Vardi, “Memoryful branching-time logics,” in
Proc. 21st LICS, 2006, pp. 265–274.

[9] L. de Alfaro, M. Faella, T. Henzinger, R. Majumdar, and M.Stoelinga,
“Model checking discounted temporal properties,”Theoretical Computer
Science, vol. 345, no. 1, pp. 139–170, 2005.

[10] M. P. Schützenberger, “On the definition of a family of automata,”
Information and Control, vol. 4, pp. 245–270, 1961.

[11] W. Kuich and A. Salomaa,Semirings, Automata, Languages, ser. Mono-
graphs in Theoretical Computer Science. Springer, 1986, vol. 5.

[12] K. Culik II and J. Karhumäki, “Finite automata computing real func-
tions,” SIAM J. Comput., vol. 23, no. 4, pp. 789–814, 1994.

[13] M. Droste and D. Kuske, “Skew and infinitary formal powerseries,” in
Proc. of ICALP, ser. LNCS 2719. Springer, 2003, pp. 426–438.

[14] Z. Ésik and W. Kuich, “An algebraic generalization of omega-regular
languages,” inProc. of MFCS, ser. LNCS 3153, 2004, pp. 648–659.

[15] M. Droste and P. Gastin, “Weighted automata and weighted logics,”
Theoretical Computer Science, vol. 380, pp. 69–86, 2007.

[16] M. Droste, W. Kuich, and G. Rahonis, “Multi-valued MSO logics over
words and trees,”Fundamenta Informaticae, vol. 84, pp. 305–327, 2008.

[17] A. Gurfinkel and M. Chechik, “Multi-valued model checking via classi-
cal model checking,” inProc. of CONCUR, ser. LNCS 2761. Springer,
2003, pp. 263–277.

[18] O. Kupferman and Y. Lustig, “Lattice automata,” inProc. of VMCAI,
ser. LNCS 4349. Springer, 2007, pp. 199–213.

[19] M. Droste and I. Meinecke, “Describing average- and longtime-behavior
by weighted MSO logics,” inMFCS, 2010, pp. 537–548.

[20] U. Zwick and M. Paterson, “The complexity of mean payoffgames on
graphs,”Theoretical Computer Science, vol. 158, pp. 343–359, 1996.

[21] H. Bjorklund, S. Sandberg, and S. Vorobyov, “A combinatorial strongly
subexponential strategy improvement algorithm for mean payoff games,”
in MFCS’04, 2004, pp. 673–685.

[22] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga,
“Resource interfaces,” inProc. of EMSOFT: Embedded Software, ser.
LNCS 2855. Springer, 2003, pp. 117–133.

[23] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin, “Generalized
mean-payoff and energy games,” inFSTTCS, ser. LIPIcs, vol. 8, 2010,
pp. 505–516.

[24] J. Esparza, “Decidability and complexity of Petri net problems - an
introduction,” in Petri Nets, ser. LNCS, vol. 1491, 1996, pp. 374–428.

[25] M. Presburger, “̈Uber die Vollständigkeit eines gewissen Systems der
Arithmetik ganzer Zahlen, in welchem die Addition als einzige Opera-
tion hervortritt,” Comptes Rendus du I Congrès de Mathématiciens des
Pays Slaves, pp. 92–101, 1929.

[26] S. R. Kosaraju and G. F. Sullivan, “Detecting cycles in dynamic graphs
in polynomial time (preliminary version),” inSTOC, 1988, pp. 398–406.

[27] E. A. Emerson and J. Y. Halpern, ““sometimes” and “not never”
revisited: On branching versus linear time,” inPOPL, 1983, pp. 127–
140.

[28] A. Pnueli, “The temporal logic of programs,” inFOCS, 1977, pp. 46–57.
[29] A. P. Sistla and L. D. Zuck, “Reasoning in a restricted temporal logic,”

Inf. Comput., vol. 102, no. 2, pp. 167–195, 1993.
[30] E. A. Emerson and E. M. Clarke, “Using branching time temporal logic

to synthesize synchronization skeletons,”Sci. Comput. Program., vol. 2,
no. 3, pp. 241–266, 1982.

[31] R. Alur and T. A. Henzinger, “Computer-aided verification: An intro-
duction to model building and model checking for concurrentsystems,”
Book in preparation, 1999.

[32] M. Ben-Ari, A. Pnueli, and Z. Manna, “The temporal logicof branching
time,” Acta Inf., vol. 20, pp. 207–226, 1983.

[33] M. Y. Vardi and P. Wolper, “An automata-theoretic approach to automatic
program verification (preliminary report),” inLICS, 1986, pp. 332–344.

12

