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Abstract. We solve the open problems of translating, when possiblepaimon
classes of nondeterministic word automata to determénéstd nondeterminis-
tic co-Buichi word automata. The handled classes includehB parity, Rabin,
Streett and Muller automata. The translations follow a edifapproach and are
all asymptotically tight.

The problem of translating Biichi automata to equivalerBéichi automata was
solved in [2], leaving open the problems of translating engta with richer ac-
ceptance conditions. For these classes, one cannot esisilydeor use the con-
struction in [2]. In particular, going via an intermediatédhi automaton is not
optimal and might involve a blow-up exponentially higheantthe known lower
bound. Other known translations are also not optimal anol\weva doubly expo-
nential blow-up.

We describe direct, simple, and asymptotically tight cargtons, involving a
29(") plow-up. The constructions are variants of the subset nectin, and
allow for symbolic implementations. Beyond the theordtiogportance of the
results, the new constructions have various applicatamsang which is an im-
proved algorithm for translating, when possible, LTL folamito deterministic
Buchi word automata.

1 Introduction

Finite automata on infinite objectare widely used in formal verification and synthe-
sis of nonterminating systems. The automata-theoretimagh to verification reduces
questions about systems and their specifications to ausethabretic problems like
language containment and emptiness [10, 18]. Recent inalustrength specification-
languages such as Sugar, ForSpec and PSL 1.01 include regplessions and/or
automata, making automata-theory even more essentialgmday [1].

There are various classes of automata, characterized nybtia@ching mode and
acceptance condition. Each class has its advantagesydigades, and common us-
ages. Accordingly, an important challenge in the the stdddutomata on infinite ob-
jects is to provide algorithms for translating between tifeeent classes. For most
translations, our community was able to come up with satiefg solutions, in the
sense that the state blow-up involved in the algorithm is@ddo be unavoidable. Yet,
for some translations there is still a significant gap betwthe best known algorithm
and the corresponding lower bound.

Among these open problems are the translations of nondigiistiv automata to
equivalent deterministic and nondeterministic co-Bimhiomata (NCW and DCW),



when possible! In [2], we introduced the@ugmented subset constructiand used it
for translating a nondeterministic Biichi automaton (NBMWNCW and DCW, when
possible. We left open the problems of translating autométaricher acceptance con-
ditions (parity, Rabin, Streett and Muller) to co-Bichi@mata. For these classes, one
cannot easily extend or use the construction in [2], and #pelgptween the lower and
upper bounds is still significant (for some of the classes éven exponential). In this
paper, we solve these problems and study the translatiommdeterministic parity
(NPW), Streett (NSW), Rabin (NRW), and Muller (NMW) word auatata to NCW
and to DCW.

A straightforward approach is to translate an automatomefricher classes via
an intermediate NBW. This approach, however, is not optifRal example, starting
with an NSW withn states and indek, the intermediate NBW has2* states, thus
the NCW would have:2t+72" states, making the dependencyidoubly-exponential.
Note that the exponential blow-up in the translation of NSMNMW to NBW cannot
be avoided [15]. A different approach is to translate thgiadl automaton, for example
an NRW, to an equivalent DPW, which can then be translatech teqaivalent DCW
over the same structure [5]. However, translating an NRWhteguivalent DPW might
be doubly exponential [4], with no matching lower bound,rever the problem of
translating to a DCW, let alone translating to NCW.

Thus, the approaches that go via intermediate automataafeofn optimal, and
our goal is to find a direct translation of these strongersga®f automata to NCW and
DCW. We first show that for NSW, an equivalent NCW can be defimedop of the
augmented subset construction (the product of the originedmaton with its subset
construction). The definition of the corresponding co-Bi@cceptance condition is
more involved in this case than in the case of translatingBWNout the blow-up stays
the same. Thus, even though NSW are exponentially morerstidtian NBW, their
translation to NCW is of exactly the same state complexifg &se one for NBW! This
immediately provides an2™ upper bound for the translation of NSW to NCW. As in
the case of translating an NBW, we can further determinizerésulting augmented
subset construction, getting3ad upper bound for the translation of NSW to DCW. Both
bounds are asymptotically tight, having matching lowerrmsiby the special cases of
translating NBW to NCW [2] and NCW to DCW [3]. The above goodavsepply also
to the parity and the generalized-Biichi acceptance donditas they are special cases
of the Streett condition.

For NRW and NMW, the situation is more complicated. Unfodtaly, an equiva-
lent NCW cannot in general be defined on top of the augmenteskesuonstruction.
Moreover, even though the results on NSW imply a translatibhNRW][1] (that is,

a nondeterministic Rabin automaton with a single pair) toAN©ne cannot hope to
proceed via a decomposition of an NRW with indeto & NRW[1]s. Indeed, the un-
derlying NRW[1]s may not be NCW-realizable, even when thaMR, and the same
for NMWs. We show that still, the NCW can be defined on tog: a@opies of the aug-
mented subset construction, giving rise té&:@"™ upper bound for the translation to
NCW. Moreover, we show that when translating to an equid¥D\W, the k copies

! The co-Biichi condition is weaker than the Biichi acceparandition, and not alb-regular
languages are NCW-recognizable, hence the “when possible”



can be determinized separately, while connected in a reabit-fashion, which gives
rise to ak3™ blow-up. As with the other cases, the blow-up involved in tfansla-
tions is asymptotically tight. The state blow-up involvedthe various translations is
summarized in Table 1 of the Section 6.

Beyond the theoretical challenge in tightening the gapd,the fact they are re-
lated to other gaps in our knowledge [6], these translatiae immediate important
applications in formal methods. The interest in the cotBidondition follows from its
simplicity and its duality to the Biichi acceptance cormuitiThe interest in the stronger
acceptance conditions follows from their richness andisgtess. In particular, stan-
dard translations of LTL to automata go via intermediateegalized Biichi automata,
which are then being translated to Blichi automata. For sagerithms, it is possible
to give up the last step and work directly with the generdliBéchi automaton [8]. It
follows from our results that the same can be done with therdkgn of translating LTL
formulas to NCW and DCW. By the duality of the co-Blichi anadBi'conditions, one
can construct a DBW fog) by dualizing the DCW for. Thus, since the translation
of LTL to NSW may be exponentially more succinct than a tratish to NBW, our
construction suggests the best known translation of LTLBMWDwhen exists.

An important and useful property of our constructions isfdm they have only a
one-sided error when applied to automata whose languagst N@W-recognizable.
Thus, given an automatad, the NCWC and the DCWD we construct are always
such thatL(A) C L(C) = L(D), while L(A) = L(C) = L(D) in caseA is NCW-
recognizable. Likewise, given an LTL formula the DBWD,, we construct is always
such thatL(D,) C L(v), while L(D,) = L(v) in casey is DBW-recognizable. As
specified in Section 5, this enables us to extend the scopeedadfplications also to
specifications that are not NCW-realizable.

2 Preliminaries

Given an alphabeX’, aword over Y is a (possibly infinite) sequenee = w; - wy - - -

of letters inX. For two words,z andy, we usex =< y to indicate that: is a pre-
fix of y andx < y to indicate that: is a strict prefix ofy. An automatonis a tu-
ple A = (¥,Q,0,Qo, ), whereX is the input alphabet is a finite set of states,
d 1 Q x ¥ — 29 s a transition function)y C @ is a set of initial states, and

is an acceptance condition. We define several acceptand@ioos below. Intuitively,
0(q,0) is the set of states that may move into when it is in the stateand it reads
the lettero. The automatotd may have several initial states and the transition function
may specify many possible transitions for each state aber|etnd hence we say that
A is nondeterministicin the case wherf),| = 1 and for every; € Q ando € X, we
have thatd(q, 0)| < 1, we say thatA is deterministic The transition function extends
to sets of states and to finite words in the expected way, tines $et of state§ and a
finite wordz, §(S, z) is the set of states that may move into when itis in a state f
and it reads.. Formally,6(S, €) = S andd(S, w - o) = U,es(5,1) 9(¢; 7). We abbrevi-
ated(Qo, z) by d(z), thuss(z) is the set of states that may visit after reading. For
an automatod and a state of .4, we denote by4¢ the automaton that is identical to



A, except for havind ¢} as its set of initial states. An automaton without an acceea
condition is called aemi-automaton

Arunr = rg,rq,--- of Aonw = wy -wy--- € X¥ is an infinite sequence
of states such thaty € Qo, and for everyi > 0, we have that; 11 € 0(r;, wiy1).
Note that while a deterministic automaton has at most asingt on an input word,
a nondeterministic automaton may have several runs on am\wqrd. We sometimes
refer tor as a word in@“ or as a function from the set of prefixeswofto the states of
A. Accordingly, we use(z) to denote the state thawisits after reading the prefix.

Acceptance is defined with respect to theisgft(r) of states that the runvisits in-
finitely often. Formallyinf(r) = {¢ € @ | forinfinitely manyi € N, we haver; =
q}. As Q is finite, it is guaranteed that f(r) # (. The runr is acceptingiff the set
inf(r) satisfies the acceptance condition

Several acceptance conditions are studied in the litexatMe consider here six:

— Buchi, wherea C @, andr is accepting iffinf(r) N« # 0.

— co-Buchi, wherea C Q, andr is accepting iffin f (r) C «. Note that the definition
we use is less standard than thg (r) N « = 0 definition; clearlyin f(r) C « iff
inf(r)N(Q\ «) = 0, thus the definitions are equivalent. We chose to go with this
variant as it better conveys the intuition that, as with tlield condition, a visit in
« is a “good event”.

— parity, wherea = {a1,as,...,as} With a; C as C -+ C ag, = Q, andr is
accepting if the minimal indekfor whichinf(r) N «; # 0 is even.

— Rabin wherea = {{a1, 1), (a2, 582), ..., {ak, Bk) }, With «;, 8; € @Q andr is
accepting iff forsomé < i < k, we have thatn f (r)Na; # 0 andin f(r)Ng; = 0.

— Streett wherea = {(51, 1), (B2, @2), ..., Bk, ax)}, with 5;,; C @ andr is
accepting iff for alll < i < k, we have thainf(r) N 3; = 0 orinf(r) Na; # 0.

— Muller, wherea = {1, as, ..., ax}, with a; C @ andr is accepting iff for some
1 <i <k, we have thatnf(r) = «,.

The number of sets in the parity and Muller acceptance cmmditor pairs in the
Rabin and Streett acceptance conditions is calledrttiex of the automaton. An au-
tomaton accepts a word if it has an accepting run on it. Thguage of an automaton
A, denoted(A), is the set of words thadl accepts. We also say thdtrecognizeshe
languagel (A). For two automatad and.A’, we say that4 and.A’ areequivalentif
L(A)=L(A).

We denote the different classes of automata by three letfemgms in{D, N}

x {B,C, P,R, S, M x {W}. The first letter stands for the branching mode of the au-
tomaton (deterministic or nondeterministic); the secatil stands for the acceptance-
condition type (Buchi, co-Biichi, parity, Rabin, Streett Muller); and the third letter
indicates that the automaton runs on words. We say that adayd. is v-recognizable

or y-realizableif L can be recognized by an automaton in the class

Different classes of automata have different expressiveepdn particular, while
NBWSs recognize allo-regular languages [12], DBWs are strictly less expresiiaa
NBWs, and so are DCWSs [11]. In fact, a langudgés in DBW iff its complement is
in DCW. Indeed, by viewing a DBW as a DCW and switching betwaecepting and
non-accepting states, we get an automaton for the comptérgdanguage, and vice



versa. The expressiveness superiority of the nondetesticinnodel over the determin-
istic one does not apply to the co-Buchi acceptance camdifihere, every NCW has
an equivalent DCW [13]. As for parity, Rabin, Streett and Mubutomata, both the
deterministic and nondeterministic models recognizevakgular languages [17].

Our constructions for translating the various automatact@®ichi automata will
use theaugmented subset constructi@}, which is the product of an automaton with
its subset construction.

Definition 1 (Augmented subset construction)[2] Let A = (¥, @, 6, Qo) be a semi-
automaton. Theugmented subset constructigh of A is the product of4 with its
subset construction. Formallyl’ = (¥, Q’, ¢, Qp), where

- Q' = Q x 29. That is, the states ofl’ are all the pairs(q, E) whereq € @ and
ECQ.

— Forall (¢, E) € Q" ando € X, we havey' ({q, E),0) = d(q,0) x {6(E,0)}. That
is, A’ nondeterministically follows4 on its Q-component and deterministically
follows the subset construction dfon its2¢-component.

= Qo = Qo x {Qo}-

3 Translating to NCW

In this section we study the translation, when possible, BW¢, NRWs, NSWs, and
NMWs to NCWs. Since the Bichi acceptance condition is aispease of these
stronger conditions, the(™) lower bound from [2] applies, and the challenge is to
come up with matching upper bounds. While nondetermini&ioin, Streett, and Muller
automata are not more expressive than nondeterministhiBiitomata, they are more
succinct: translating an NRW, NSW, and NMW withstates and indek to an NBW,
results in an NBW wittO(nk), O(n2%), andO(n?k) states, respectively [15, 16]. Note
that an NPW is a special case of both an NSW and an NRW.

Afirst attempt to translate NRWs, NSWs, and NMWs to NCWs istwig interme-
diate NBWSs, which can be translated to NCWs by the augmeniiesie$ construction
[2]. By the blow-ups above, however, this results in NCW4 @ire far from optimal.
A second attempt is to apply the augmented subset constnuditiectly on the input
automaton, and check the possibility of defining on top ofstiable co-Buichi accep-
tance condition.

Itis not hard to see that this second attempt does not wokdifautomata. Consider
for example the Rabin acceptance condition. Note that tgenaated subset construc-
tion does not alter a deterministic automaton. Also, DRWsraat DCW-type [7] (that
is, there is a DRWA whose language is DCW-recognizable, but still no DCW eguiva
lent to A can be defined on top of the structure 4. It follows that there are NRWs
whose language is NCW-recognizable, but still no NCW re&igg them can be de-
fined on top of the automaton obtained by applying the augedesuibset construction
on them (see Theorem 2 for a concrete example).

With this in mind, this section is a collection of good newssE we show in Sub-
section 3.1 that NSWs (and NPWSs) can be translated to NCWspoofthe augmented
subset construction. Second, while this is not valid for N&REvid NMWs, we show



in Subsection 3.2 that they can be translated to NCWs on t@purfion of copies of
the augmented subset construction. Moreover, the trémslat the obtained NCWs to
equivalent DCWs does not involve an additional exponebt@k-up (see Section 4).

We first provide some basic lemmata from [2]. We start with aprty relating
states of a DCW (in fact, any deterministic automaton) tmatraachable via words
that lead to the same state in the subset construction of@madent nondeterministic
automaton.

Lemma 1. [2] Consider a nondeterministic automatof with a transition function
0.4 and a DCWD with a transition functiordp such thatL(A) = L(D). Letd; andd,
be states oD such that there are two finite words andz, such thatvp (z1) = di,
6’D(§C2) = da, and(S_A(Il) = 5_,4(172). Then,L(Ddl) = L(Dd2)

For automata on finite words, if two states of the automater liee same language,
they can be merged without changing the language of the attamWhile this is
not the case for automata on infinite words, the lemma belables us to do take
advantage of such states.

Lemma 2. [2] Consider a DCWD = (X D, §, Dy, ). Letd; andds be states in
D such thatL(D?) = L(D4). For all finite wordsu and v, if 6(dy,u) = d; and
0(dz, v) = ds then for all wordsw € (u + v)* and statesl € 6(dy, w) U §(da, w), we
haveL(D?) = L(D%).

The next lemma takes further advantage of DCW states reziogrthe same lan-
guage.

Lemma 3. [2] Let D = (¥, D, §, Dy, ) be a DCW. Consider a stattc D. For all
nonempty finite words andw, if (v* - u)* C L(D?) and for all wordsw € (v + u)*
and states!’ € §(d, w), we haveL(D?) = L(D?), thenv* € L(D?).

3.1 From NSW to NCW

The translation of an NSW to an NCW, when exists, can be donepof the aug-
mented subset construction, generalizing the acceptamtion used for translating
an NBW to an NCW.

In the translation of an NBW to an NCW, we start with an NBY¥nd define a state
(b, E') of the augmented subset construction to be co-Biichi aicegipthere is some
pathp in B, taking (b, F) back to itself via a Buichi accepting state. The correctness
of the construction follows from the fact that an NCW-recizgible language is closed
under pumping such cycles. ThusAfaccepts a word that includes a subword along
which p is read, therB also accepts words obtained by pumping the subword along
whichp is read. In turns out that this intuition is valid also whenstart with an NSW
S: a state(s, F) of the augmented subset construction is co-Buchi acagptthere is
some pathp in S, taking(s, E) back to itself, such that visits «; or avoidg; for every
pair 7 in the Streett acceptance condition. This guarantees tiapimg p infinitely
often results in a run that satisfies the Streett conditidrickvin turn implies that an
NCW-recongnizable language is closed under such pumping.

We formalize and prove this idea below.



Theorem 1. For every NSWS with n states that is NCW-recognizable, there is an
equivalent NCW with at most2™ states.

Proof. LetS = (X, S, ds, So, (B1, 1), - .. Bk, ax)). We define the NCW = (¥, C,
dc, Co, ac) as the augmented subset constructios afith the following acceptance
condition: a state is a member af if it is reachable from itself along a path whose
projection onS visits «; or avoidsg; for everyl < i < k.

Formally, (s, E) € ac if there is a finite worde = 2125 - - - 2, Of lengthm and
a sequence af + 1 states(sg, Eo) . .. (Sm, Em) such that(sg, Eo) = (Sm, Em) =
(s, F), and for all0 <! < m we have(s;11, Ej+1) € dc¢({(s1, E}), z14+1), and for every
1 < i <k, either there i$) < I < m such thats; € o; ors; & g; forall0 <1 < m.
We refer toz as thewitnessfor (s, E'). Note that: may be the empty word.

We prove the equivalence &f andC. Note that the2®-component of”' proceeds
in a deterministic manner. Therefore, each rwf S induces a single run df (the run
in which theS-component follows). Likewise, each rum of C induces a single run of
S, obtained by projecting on its.S-component.

We first prove tha (S) C L(C). Note that this direction is always valid, eversif
is not NCW-recognizable. Consider a warde L(S). Letr be an accepting run &
on w. We prove that the run’ induced byr is accepting. Let/ C {1,...,k} denote
the set of indices of acceptance-pairs whgsdement is visited infinitely often by.
Thatis,J = {j | 8; Ninf(r) # 0}. Consider a statés, E) € inf(r'). We prove that
(s, E) € ac. Since(s, E) appears infinitely often in’ andr is accepting, it follows
that there are two (not necessarily adjacent) occurrenicés, &), between which
visits o for all j € J and avoidss; for all ¢ ¢ J. Hence, we have the required witness
for (s, E'), and we are done.

We now prove that.(C) C L(S). Consider a wordv € L(C), and letr be an
accepting run o€ onw. LetJ C {1,...,k} denote the set of indices of acceptance-
pairs whose3-element is visited infinitely often by. Thatis,J = {j | (8; x 2%) N
inf(r) # 0}. If J is empty then the projection ofon its S-component is accepting,
and we are done. Otherwise, we proceed as follows. For gvery, let (s;, E;) be a
state in(3; x 2%) Ninf(r).

By the definition ofJ, all the stategs;, E;), with j € J, are visited infinitely often
in r, whereas states whogecomponent is in3;, for i ¢ J, are visited only finitely
often inr. Accordingly, the stateés;, E;), with j € J, are strongly connected via a
path that does not vis#;, fori ¢ J. In addition, for everys;, E;), with j € J, there is
awitness; for the membership ofs;, E;) in a¢, going from(s;, E;) back to itself via
o and either avoiding; or visiting «;, for everyl < i < k. Let (s, E) be one of these
(sj, E;) states, and let be a prefix ofw such that(z) = (s, E). Then, there is a finite
word z along which there is a path frofs, E) back to itself, visiting alky; for j € J
and either avoiding; or visiting «; for everyl < i < k. Thereforeyx - ¢ € L(S).

Recall that the language ¢fis NCW-recognizable. LeD = (X, D, dp, Do, ap)
be a DCW equivalent t§. SinceL(S) = L(D) andz - z¥ € L(S), it follows that the
runp of D onz - z¥ is accepting. Sinc® is finite, there are two indicesandm, such
thatl < m, p(z - 2') = p(x - ™), and for all prefixeg of x - z* such that: - 2! < v,
we havep(y) € ap. Letq be the state oD such thayy = p(z - 2%).



Consider the rum of D onw. Sincer visits (s, F) infinitely often andD is finite,
there must be a staté € D and infinitely many prefixep,, ps, ... of w such that
for all ¢ > 1, we haver(p;) = (s, FE) andn(p;) = d. We claim that the stateg
andd of D satisfy the conditions of Lemma 1 withy, beingp; andz; beingz - 2*.
Indeed,dp(p1) = d, 6p(z - 2') = ¢, andds(p1) = ds(z - 2') = E. For the latter
equivalence, recall thdts (z) = F andds(E, z) = E. Hence, by Lemma 1, we have
thatL(D?) = L(D?).

Recall the sequence of prefixgs, po,.... Foralli > 1, letp;y1 = p; - t;. We
now claim that for alli > 1, the statel satisfies the conditions of Lemma 3 with
beingz™~! andv beingt;. The second condition is satisfied by Lemma 2. For the first
condition, consider a word’ € (v* - u™)“. We prove that’ € L(D?). Recall that
there is a run o5° onwv that goes back te while avoidings; for all i ¢ J and there
is a run ofS® on u that goes back te while visiting «; for all j € J and either
visiting «; or avoidingg; for all ¢ ¢ J. (Informally, v “fixes” all the problems o#, by
visiting «; for every; thatv might visit.) Recall also that for the wone , we have
thatr(p1) = (s, E) andn(p1) = d. Hencep, - w’' € L(S). SinceL(S) = L(D), we
have thap; - v’ € L(S). Thereforew’ € L(D?).

Thus, by Lemma 3, for all > 1 we have that¥ € L(D?). Sincedp(d,t;) = d,
it follows that all the states thd? visits when it reads$; from d are inap. Note that
w = py -t -ta---. Hence, sincép(p;) = d, the run of D on w is accepting, thus
w € L(D). SinceL(D) = L(S), it follows thatw € L(S), and we are done. O

Two common special cases of the Streett acceptance camditeothe parity and
the generalized Bchi acceptance conditions. In a generalized Buchi automattm w
states?), the acceptance conditionds= {1, as, ..., ar} with a; C @, and a run-
is accepting ifinf(r) N«a; # @ forall 1 < i < k. Theorem 1 implies that an NCW-
recognizable nondeterministic parity or generalizedBiacitomaton withn states can
be translated to an NCW with2" states, which can be defined on top of the augmented
subset construction.

3.2 From NRW and NMW to NCW

In this section we study the translation of NRWs and NMWs to/W&; when exists.

Unfortunately, for these automata classes we cannot ddfiegaivalent NCW on top

of the augmented subset construction. Intuitively, theidlen of Subsection 3.1, which
is based on the ability to pump paths that satisfy the acoepteondition, is not valid

in the Rabin and the Muller acceptance conditions, as irethesditions, visiting some
“bad” states infinitely often need not be compensated byingsisome “good” ones
infinitely often. We formalize this in the example below, whiconsists of the fact that
DRWs are not DCW-type [7].

Theorem 2. There is an NRW and an NMW that are NCW-recognizable but aivequ
alent NCW for them cannot be defined on top of the augmenteséiscdnstruction.

Proof. Consider the NRWA appearing in Figure 1. The language 4fconsists of
all words over the alphabd®, 1} that either have finitely man§’s or have finitely



many1’s. This language is clearly NCW-recognizable, as it is thion of two NCW-
recognizable languages. Sindés deterministic and the augmented subset construction
does not alter a deterministic automaton, it suffices to stawthere is no co-Biichi
acceptance condition’ that we can define on the structure4fand get an equivalent
language. Indeedy’ may either bed, {qo}, {q1}, or {qo, g1}, none of which provides
the language ofl. Since every NRW has an equivalent NMW over the same streictur
the above result also applies to the NMW case. a

A: 1

‘@G‘ o = {(qo0,q1), (q1,q0)}

Fig. 1. The NRW.A4, having no equivalent NCW on top of its augmented subsettaain.

Consider an NRW or an NMW with indexk. Our approach for translating to an
NCW is to decompose it th NSWs over the same structure, and apply the augmented
subset construction on each of the components. Note thataimponents may not
be NCW-realizable even wheA is, thus, we should carefully analyze the proof of
Theorem 1 and prove that the approach is valid.

We now formalize and prove the above approach. We start witllecomposition
of an NRW or an NMW with index: into X NSWSs over the same structure.

Lemma 4. Every NRW or NMWA with indexk is equivalent to the union &f NSWs
over the same structure a.

Proof. An NRW A with statesA and indext is the union ofc NRWs with index 1 over
the same structure a&. Since a single-indexed Rabin acceptance condition, 51)}
is equivalent to the Streett acceptance condifion, 0), (A, 31)}, we are done.

An NMW A with statesA and indexk is the union ofk NMWs with index 1 over
the same structure a4. Since a single-indexed Muller acceptance condifion} is
equivalent to the Streett acceptance condifigh\ a1, 0) } UU, ¢, {(4, {s})}, we are
done. O

Next we show that a union &f NSWs can be translated to a single NSW over their
union.

Lemma 5. Considerk NSWsSy, ..., Sk, over the same structure. There is an NSW
over the disjoint union of their structures, such tH4tS) = Ule L(S)).

Proof. We obtain the Streett acceptance conditio& fy taking the union of the Streett
acceptance conditions of the NSWs, . . ., S;.. Note that while the underlying NSWs
are interpreted disjunctively (that is, in order for a woodoe accepted by the union,
there should be an accepting run on it in safk the pairs in the Streett condition
are interpreted conjunctively (that is, in order for a rubéoaccepting, it has to satisfy
the constraints by all the pairs in the Streett conditiong. p¥ove that stillL(S) =



Ule L(S;). First, if a runr of S is an accepting run of an underlying NS, then
the acceptance conditions of the other underlying NSWsareausly satisfied. Hence,
if a word is accepted by, for somel < i < k, thenS accepts it too. For the other
direction, if a wordw is accepted i, then its accepting run i is also an accepting
run of one of the underlying NSWs, thusis in Ule L(S;). O

Finally, we combine the translation to Streett automat wie augmented subset
construction and get the required upper bound for NRW and NMW

Theorem 3. For every NCW-recognizable NRW or NMW wittstates and index,
there is an equivalent NC\Wwith at mostkn2” states.

Proof. Consider an NRW or an NMWA with n states and indek. By Lemmas 4 and

5, there is an NSW$ whose structure consists btopies of the structure of such that
L(S) = L(A). LetC be the NCW equivalent t6, defined over the augmented subset
construction ofS, as described in Theorem 1. Note tifahasnk states, thus a naive
application of the augmented subset construction on ifteguan NCW withkn2"
states. The key observation, which implies that we get an N@GWonly kn2" states,

is that applying the augmented subset constructio§ e deterministic component
of all the underlying NCWs is the same, and it coincides wiih $ubset construction
applied to.A. To see this, assume that = (X, A, Ao, d,«). Then,§ = (X, A x
{1,...,k},Ap x {1,...,k},8,a'), whereforalla € A,1 < j < k,ando € X, we
have thav'((a, j),0) = d(a, o) x {j}. Applying the augmented subset construction,
we get the product af and its subset construction, where the latter has a stasvéoy
reachable subset &. That is, a subset’ C S is a state of the subset construction if
there is a finite word: for which §’(u) = G’. Since for alla € 4,1 < j < k, and

o € X, we have that'({a,j),0) = d(a,0) x {j}, it follows thatG’ is of the form

G x {j}forall1 < j < k and som&7 C A. Hence, there are up ®*! = 2" states in
the subset construction . Thus, when we apply the augmented subset construction
onS, we end up with an NCW with onlgn2™ states, and we are done. a

4 Translating to DCW

In a first sight, the constructions of Section 3, which tratesh nondeterministic word
automaton to an NCW, are not useful for translating it to a D@gvthe determiniza-
tion of an NCW to a DCW has an exponential state blow-up. Yet,slvow that the
special structure of the constructed NCW allows to deteizaiit without an additional
exponential blow-up. The key to our construction is the olet#on that the augmented
subset construction is transparent to additional appdicatof the subset construction.
Indeed, applying the subset construction on an NCWith state spacé x 27, one
ends up in a deterministic automaton with state sgdce, E) | ¢ € E} : E C B},
which is isomorphic t@5.

The standard breakpoint construction [13] uses the subsstreiction as an inter-
mediate layer in translating an NCW with state spatéo a DCW with state space
3¢. Thus, the observation above suggests that applying it ospmcial NCWC would



not involve an additional exponential blow-up on top of tme dnvolved in going from
some automatou to C. As we show in Theorem 4 below, this is indeed the case.

Starting with an NSW, the determinization of the correspog®CW is straightfor-
ward, following [13]'s construction. However, when stagiwith an NRW or an NMW,
thek different parts of the corresponding NCW (see Theorem 3htdguse a doubly-
exponential blowup. Fortunately, we can avoid it by detaiming each of the: parts
separately and connecting them in a round-robin fashiontéfég to the construction
in Theorem 4 as thereakpoint construction

Theorem 4. For every DCW-recognizable NPW, NSW, NRW, or NMW/ith n states
there is an equivalent DC\® with O(3") states.

Proof. We start with the casel is an NSW. The DCWD follows all the runs of the
NCW C constructed in Theorem 1. Letz C A x 24 be the acceptance condition of
C. The DCWD accepts a word if some run 6fremains inac from some positions.
At each stateD keeps the corresponding subset of the state3, @ind it updates it
deterministically whenever an input letter is read. In otdecheck that some run ¢f
remains inae from some position, the DCVD keeps track of runs that do not leave
ac. The key observation in [13] is that keeping track of suchsraan be done by
maintaining the subset of states that belong to these runs.

Formally, letA = (X, A, 6.4, Ao, a4). We define a functiorf : 24 — 24 by
f(E) ={a| {(a,E) € ac}. Thus, when the subset componentdis in stateE, it
should continue and check the membershipdronly for states inf (E). We define the
DCWD = (X, D, ép, Dy, ap) as follows.

- D={(50)]5CAandO C SN f(S)}.

— Forall(S,0) € D ando € X, the transition function is defined as follows.
o If O#0,thenip((S,0),0) ={(04(S,0),04(0,0)N f(S))}.
o If O =0,thendp((S,0),0) = {(04(S,0),04(S,0)N f(S)}.

— Do = {{A0,0)}.

—ap ={(5,0)[ O #0}.

Thus, the run o> on a wordw has to visit states i x {0} only finitely often,
which holds iff some run of onw eventually always visits. Since each state dp
corresponds to a function from to the set{ “in SN O”,"in S\ O”,“notin S"}, its
number of states is at mosit?!.

We proceed to the casé is an NRW or an NMW. Here, by Theorem 3| has
an equivalent NCW with kn2™ states. The NCW is obtained by applying the aug-
mented subset construction bitopies ofA, and thus has unconnected components,
Ci,...,Ck that are identical up to their acceptance conditiess .. ., ac, .

Since thek components of all have the samel x 24 structure, applying the
standard subset construction @none ends up with a deterministic automaton that is
isomorphic to24. Applying the standard breakpoint construction@mwe could thus

2 Readers familiar with the construction of [13] may find itieaso view the construction here as
one that dualizes a translation of universal co-Buichimatia to deterministic Blichi automata,
going through universal Biichi word automata — these cootd by dualizing Theorem 1.



hope to obtain a deterministic automaton with oBi! states. This construction, how-
ever, has to consider the different acceptance conditignmaintaining in each state
not only a pair(S, O), but a tuple(S, O4, ..., O ), where eacl®); C S corresponds to
the standard breakpoint construction with respeet;tdSuch a construction, however,
involves ak™ blow-up.

We circumvent this blow-up by determinizing each of th&s separately and con-
necting the resultind;’s in a round-robin fashion, moving fror®; t0 D; (mod k)+1
when the se©, which maintains the set of states in paths in whizhavoidsc;, be-
comes empty. Now, there is< ¢ < k such thatC; has a run that eventually gets stuck
in o iff there is1 < ¢ < k such that in the round-robin construction, the run getskstuc
in a copy that corresponds 1?; in states withD # ().

Formally, for everyl < i < k, we define a functiory; : 24 — 24 by fi(E) =
{a| (a, E) € ac,}. We define the DCWD = (X, D, 0p, Dy, ap) as follows.

- D={(50,iy| SCAOCSNf(S), andi € {1,...k}}.
— Forall(S,0,i) € D ando € X, the transition function is defined as follows.
o If O # 0, thendp((S,0,%),0) = {{(S",0',i")}, whereS" = §4(5,0), 0’ =
d4(0,0) N fi(S)andi’ =4 (mod k) + 1if O’ = () andi otherwise.
e If O =10,thendp((S,0,i),0) = {(S",0",i)}, whereS’" = 54(S,0), 0" =
d4(S,0)N fi(S)andi’ =i (mod k) + 1if O’ = () andi otherwise.
— Do = {<AQ ofCl,@>}.
—ap ={(5,0,i) | O # 0}.

A run of D is accepting if it gets stuck in one of the sets of acceptiatest Since
the different parts of are unconnected, we have that a rurfa$ accepting iff it gets
stuck in the accepting states of one of this. Hence, a word is accepted Byiff it is
accepted byD, and we are done.

O

By [3], one cannot avoid thg" state blow-up for translating an NCW to a DCW.
Since this lower bound clearly holds also for the strongeditions, we can conclude
with the following.

Theorem 5. The tight bound for the state blow-up in the translation, whpessible, of
NPW, NSW, NRW and NMW to an equivalent DCW(3").

5 Applications

The translations of nondeterministic automata to NCW anth\DeZe useful in various

applications, mainly in procedures that currently involieterminization. The idea is
to either use an NCW instead of a deterministic Blichi ortpanitomaton, or to use a
DBW instead of a deterministic parity automaton. We elatsat@n these applications
in [2], where the starting point was NBWs. In this section wew that the starting

point for the applications can be automata with richer atanege conditions, and that
starting with the richer acceptance conditions (and hewith, automata that may be
exponentially more succinct!), involves no extra cost.



In addition, all the applications described in [2] that ilwea translation of LTL
formulas to NCWs, DCWs or DBWSs, can now use an intermediatenaaton of the
richer classes rather than an NBW. Here too, this can lead xponential saving.
Indeed, the exponential succinctness of NSW with respedi&d/ [15] is proved us-
ing languages that can be described by LTL formulas of patyiablength. It follows
that there are LTL formulas whose translation to NSW woulcekponentially more
succinct than their translation to NBW. Moreover, in pregtitools that translate LTL
to NBW go through intermediate generalized-Bichi aut@nahich are a special case
of NSW. Our results suggest that in the applications desdrielow, one need not
blow-up the state space by going all the way to an NBW.

We first note two important features of the translations. fiitsé¢ feature is the fact
that the constructions in Theorems 1, 3, and 4 are based snltiset construction, have
a simple state space, are amenable to optimizations, anbecanmplemented symbol-
ically [14]. The second feature has to do with the one-sidear ®f the construction,
when applied to automata that are not NCW-recognizableoiidms 1, 3 and 4 guar-
antee that if the given automaton is NCW-recognizable, therconstructions result in
equivalent automata. As stated below, if this is not the gasm the constructions have
only a one-sided error.

Lemma 6. For an automatonA, let C be the NCW obtained by the translations of
Theorems 1 and 3, and &t be the DCW obtained fro by applying the breakpoint
construction of Theorem 4. Theb(A) C L(C) = L(D).

Proof. It is easy to see that the proof of tig.A) C L(C) direction in Theorems 1
and 3, as well as the equivalenc&adndD in Theorem 4, do not rely on the assumption
that.4 is NCW-recognizable. O

Below we list the main applications. More details can be fbim[2] (the descrip-
tion of the problems is the same, except that there the inpintermediate automata
are NBWs, whereas here we can handle, at the same compbdkitgher acceptance
conditions).

— Deciding whether a given automaton (NSW, NPW, NRW, or NMWNIEW-
recognizable.

— Deciding whether a given LTL formula is NCW- or DBW-recogailite.

— Translating an LTL formula to a DBW: For an LTL formula let L(¢)) denote the
set of computations satisfying. Then, the following is an easy corollary of the
duality between DBW and DCW.

Lemma 7. Consider an LTL formula) that is DBW-recognizable. Led-,, be a
nondeterministic automaton acceptifig—), and letD,, be the DBW obtained by
dualizing the breakpoint construction gf,. Then,L(Dy,) = L(%).

Note that one need not translate the LTL formula to an NBW, eaud instead
translate it to a nondeterministic generalized Biichi @reto a Streett automaton,
which are more succinct.

— Translating LTL formula to the alternation-freecalculus.



Using the one-sided erroiT he one-sided error of the constructions suggest appitsiti
also for specifications that are not NCW-recognizable. Taadlation to DBW, for
example, can be used in a decision procedure for’'Cdden when the path formulas
are not DBW-recognizable.

We demonstrate below how the one-sided error can be usedifomg LTL synthe-
sis. Given an arbitrary LTL formulg, let D,, be the DBW constructed as in Lemma 7.
Lemma 6 implies thaL(D,,) C L(v). The polarity of the error (that i€p,, underap-
proximates)) is the helpful one. If we get a transducer that reali2gs we know that
it also realizes), and we are done. Moreover, as suggested in [9], in Pgsis unreal-
izable, we can check, again using an approximating DBW, ladrety) is realizable for
the environment. Only if both) is unrealizable for the system and) is unrealizable
for the environment, we need precise realizability. No#g then, we can also conclude
thati) is not in DBW.

6 Discussion

The simplicity of the co-Buichi condition and its duality ttee Biichi condition makes
it an interesting theoretical object. Its many recent aggions in practice motivate
further study of it. Translating automata of rich accep&oenditions to co-Biichi au-
tomata is useful in formal verification and synthesis, yet skate blow-up that such
translations involve was a long-standing open problem. @ees the problem, and
provided asymptotically tight constructions for transigtall common automata classes
to nondeterministic and deterministic co-Biichi automata

Allthe constructions are extensions of the augmented sabastruction and break-
point construction, which are in turn an extension of thadasbset construction. In
particular, the set of accepting states is induced by simgdehability queries in the
graph of the automaton. Hence, the constructed automageehsimple state space and
are amenable to optimizations and to symbolic implemeoriati

The state blow-up involved in the various translations imsiarized in Table 1.

|  From\ To [[NCW]| DCW|

NBW, NPW, NSW|| n2" 3"
NRW, NMW kn2™ | k3"

Table 1. The state blow-up involved in the translation, when possibf a word automaton with
n states and indek to an equivalent NCW and DCW.

Since the lower bounds for the translations are known fosfleeial case of the ori-
gin automaton being an NBW, this is a “good news” paper, jtiog matching upper
bounds. The new translations are significantly, in somescasgonentially, better than
known translations. In particular, they show that the exgraial blow-ups in the trans-
lation of NSW to NBW and of NBW to NCW are not additive. This igitg rare in the
theory of automata on infinite words. The good news is cawiet to the applications



of the translations. In particular, our results suggedtdha need not go via intermedi-
ate NBWs in the translation of LTL formulas to DBWSs, and thatrking instead with
intermediate NSWs can result in DBWs that are exponentafigller.
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