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Abstract. Alternating automata play a key role in the automata-theoretic ap-
proach to specification, verification, and synthesis of reactive systistasy
algorithms on alternating automata, and in particular, their nonemptiness test,
involve removal of alternation: a translation of the alternating automaton to an
equivalent nondeterministic one. For alternatirigeBi automata, the best known
translation uses the “breakpoint construction” and involve©&3i*) state blow-

up. The translation was described by Miyano and Hayashi in 1984, avidesy

used since, in both theory and practice. Yet, the best known lower bisund
only 2".

In this paper we develop and present a complete picture of the problera of
ternation removal in alternatingtBhi automata. In the lower bound front, we
show that the breakpoint construction captures the accurate esdealterma-

tion removal, and provide a matching(3™) lower bound. Our lower bound
holds already for universal (rather than alternating) automata with &aladp of

a constant size. In the upper-bound front, we point to a class of ditegriiichi
automata for which the breakpoint construction can be replaced by &esin®¥
construction. Our class, of ordered alternatinigcBi automata, strictly contains
the class of very-weak alternating automata, for whichm@f construction is
known.

1 Introduction

The automata-theoretic approach to formal verificatiors @agomata on infinite words
and trees in order to model systems and their specificatBynsranslating specifica-

tions to automata, we can reduce problems like satisfiglaitid model checking to the
nonemptiness and containment problems of automata. Thplegity of the automata-

based algorithms is induced by both the blow-up involvedattanslation of specifi-

cations to automata, and the complexity of the nonemptiamed€ontainment problems
for them. The automata-theoretic approach has proven tatbeneely useful and pop-
ular in practice [1, 22].

Early translations of temporal-logic formulas to automada nondeterministic au-
tomata. The transition function of a nondeterministic wantomaton suggests several
successor states to each state and letter, and an input svacdepted by the automa-
ton if some run on it is accepting. The translation of LTL tandeterministic Bichi
automata (NBW, for short) is exponential [14, 23]. Since tiomemptiness problem
for NBWs can be solved in NLOGSPACE, the translation suggeste SPACE upper
bound for the model-checking and satisfiability problemETdf [14, 23].

In the early 90s, researchers started to base the autohsateetic approach oal-
ternating automatdl9, 20]. In an alternating automaton, the transition fiorctmaps a



state and a letter to a formula over the set of states, indgcht which states the suffix
of the word should be accepted. For examplé{if,a) = ¢1 A (¢2 V g3), then when
the automaton is in statg and reads the letter, then the suffix of the word should
be accepted both from the stateand from eitheg, or g3. Thus, several copies of the
automaton run on the input word. As shown in [4, 13], the ti@ien of temporal logic
to alternating automata is simple and involves no blow-ugcakdingly, the complex-
ity is shifted to the nonemptiness problem, which is harderafternating automata,
and involves removal of alternation; that is, a translatman equivalent nondetermin-
istic automaton. For alternatingiiBhi automata (ABWs, for short), such a translation
involves an exponential blow-up [16], leading to a PSPACEamptiness algorithm,
which is tight.

It turns out that the use of intermediate alternating autarhas many advantages.
In some cases, such as branching-time model checking, eneeaaon about the al-
ternating automaton without removing alternation [13]LTiL, the use of intermediate
alternating automata enables further optimizations ortréneslation of LTL to NBW
[8,9,21], and has led to improved minimization algorithras KBWs [5, 6]. In addi-
tion, postponing the removal of alternation to later stagfethe algorithms has led to
simplified decision and synthesis procedures [7,12].

Consider an alternating automatdnwith state spacé), transition functiory, and
seta of accepting states. Removal of alternationdimas the flavor of removal of non-
determinism in nondeterministic automata. As there, timstracted automaton follows
the subset construction applied.to Here, however, when the constructed automaton
is in a state associated with a subSet @, the input word should be accepted from all
the states irt, and there may be several successors to the state assauithtet] For
example, if5(go, a) = g1 A (g2 V g3), then in an equivalent nondeterministic automaton,
the transition function would map a state associated wils#t{ g, } and the letter. to
a nondeterministic choice between the two states assdaiate {q, g2} or {q1,gs}.

In the case of finite words, it is easy to see that defining the/sef accepting states
to be these associated with sets containediiesults in an equivalent nondeterministic
automaton.

The case of infinite words is more difficult. Definiag as above does not work, as
it forces the different copies o4 to visit a simultaneously. Also, it is not clear whether
a “round-robin” examination of the copies (as done in thecNBW intersection) is
possible, as the number of copies is not bounded. A procdduedternation removal
in ABWs was suggested in 1984 by Miyano and Hayashi [16]. Tlea idehind the
procedure, known as thereakpoint constructignis that the states of the equivalent
NBW maintain, in addition to the sé&t associated with the subset construction, also a
setO C S\ « of states along runs that “owe” a visit to the set of accepsitages?!
Thus, starting with an ABW with: states, the breakpoint construction ends up in an
NBW with at most3™ states. While the construction is only exponential (one ¢oul
have expected 2°("1°s™) plow-up, as is the case of complementation or determiniza-
tion of NBWSs [15]), it is conceptually different from the sihepsubset construction.
In particular, it is annoying that the construction doesmake use of the fact that the

1 The direct translations of LTL to NBW, which do not go via ABWSs, implemansimilar
breakpoint construction, by means of an “eventuality automaton” [23].



Bichi condition is memoryless, which suggests that we do ae¢ o run more than
n copies. In addition, from a practical point of view, the ndedmaintain two sub-
sets makes the state space exponentially bigger and makésplementation of the
breakpoint construction difficult and complex [2, 5, 10,.17]

These drawbacks of the breakpoint construction, and itlopeance in practice
for some natural specifications have led Gastin and Oddouabevelop an alternative
translation of LTL to NBW [10]. The new translation is basettbe fact that the ABWs
that correspond to LTL formulas avery weakin the sense that all the cycles in them
are of size one (in other words, the only cycles are self4doft is shown in [10]
that for very weak ABWS, one can replace the breakpoint coatn by a simpler
construction, with only am2™ blow-up.

In this paper we develop and present a complete picture @irttdem of alternation
removal in ABWSs. In the lower bound front, we show that the kpeént construction
of [16] and its{2(3™) blow-up cannot be avoided. In the upper-bound front, wetdoin
a class of ABWs that is strictly more expressive than verylkw&BW and for which
the breakpoint construction can be replaced by a simg@érconstruction. Below we
elaborate on the two contributions.

First, we show that the concept of the breakpoint constvaataptures the accurate
essence of alternation removal in ABWSs. Thus, there is a reeaddociate the states of
the equivalent NBW with two sets, and tli&3™) blow-up cannot be avoided. Tech-
nically, we describe a family of languagés, such thatZ,, can be recognized by an
alternating (in fact, a universal)iBhi automaton with states, whereas an equivalent
NBW requires at Ieas% - 3" states: This solves negatively the long-standing open
problem of improving the breakpoint construction to onewaihO(2") blow-up. As in
[24], our lower-bound proof starts with automata with an@xgntial alphabet, which
we then encode using a fixed-size alphabet. We show tha? (k&) lower bound ap-
plies also to the determinization of nondeterministic dozB word automata and for
alternation removal in alternatingiBhi tree automata [18].

Second, we introducerdered automatand show that alternation removal in or-
dered ABWs can avoid the breakpoint construction and ingobrdy ann2™ blow-up.
Essentially, an automaton is ordered if the only rejectymes induced by its transition
function are self loops. Note that all very weak ABWs are oedebut not vice versa.
Indeed, in ordered automata we have no restrictions on €ybbkt contain accepting
states. Ordered automata are strictly more expressivevitigrweak ABWs. For ex-
ample, the specificationg‘holds in all even positions” and “whenever theresgquest
thentry andackalternate untigrantis valid” can be specified by an ordered ABW but
not by a very weak ABW. As the above specifications demorestoatiered ABWs can
handle regular specifications, which are strictly more eggive than LTL and are in-
deed very popular in modern specification formalisms [3lug,tour results extend the
fragment of automata for which the breakpoint constructian be avoided. The order
condition enables the equivalent NBW to examine the stdtédsecABW that are not
in « in a round-robin fashion: whenever the NBW is in a state dased with a setS
of states, it examines a single state S \ a and makes sure that no path in the run of

2 The% constant can be reduced and probably also eliminated by some monéctgakiork,

which we do not find interesting enough.



the ABW gets trapped ip: as long a® is a successor of itself, it keeps examinjng
Only when a chain op’s ends, the NBW changes the examined state. The acceptance
condition then makes sure that the NBW does not get trappadejecting state.

We study the expressive power of ordered automata and anguéhe order con-
dition defines a fragment of automata for which the breakpoamstruction can be
avoided. We also show that th™ upper bound for the translation of ordered ABWs
to NBWs is tight, thus even for ordered automata one needsjimewnt the subset con-
struction with additional information. Finally, we showattfor ordered universali®hi
automata, we can replace the examined state by a subseteo§ ltat are examined,
resulting in an alternative construction with blow-2ip"™™, wherem is the size of the
alphabet. This is in contrast with many translations in exgta-theory (c.f. [24], as well
as our lower bound proof here), where moving to an alphabataifhstant size does
not change the state blow-up.

2 Preliminaries

Given an alphabeY, aninfinite word overY’ is an infinite sequence = oy-01 -+ - 03 - -
of letters inX. For a wordw and two indices,, ¢, > 0, we denote byu[tl,tz} its sub-
word oy, - 04,41 - - - 0¢,. In particular,w|0, ¢1] is the prefixoy - - o4, of w, and

wlte, o0l is its SUfﬁXO’t2 SOyl

For a given sefX, let BT (X) be the set of positive Boolean formulas ovéri.e.,
Boolean formulas built from elements X usingA and V), where we also allow the
formulastrue andfalse. ForY C X, we say that” satisfiesa formulad € B*(X)
iff the truth assignment that assigtrae to the members of and assignfalseto the
members ofX \ Y satisfiesd. An alternating Bichi automaton on infinite words a
tuple A = (X, Q, ¢in, 9, @), whereX is the input alphabety is a finite set of states,
gin € Q is an initial state§ : Q x X — BT(Q) is a transition function, and C Q
is a set of accepting states. We define runsddfy means of infinitebAGs (directed
acyclic graphs§.A run of A on a wordw = o - oy - - - is an infinitebAc G = (V, E)
satisfying the following (note that there may be severasrofi4 onw).

— V C @ x Nis as follows. LetQ); C @ denote all states in levél Thus,@; = {q :
(¢;1) € V}. Then,Qo = {gin}, andQy41 satisfies)\ ., d(q, o).

— FE C Upo(@Q1 x {1}) x (Qi+1 x {l + 1}) is such thatE((q, 1), (¢',1 + 1)) iff
Q111 \ {¢'} does not satisfyi(q, ;).

Thus, the root of thedAG contains the initial state of the automaton, and the states
associated with nodes in leviel- 1 satisfy the transitions from states corresponding to
nodes in level. For a setS C @, a node(q,i) € V is anS-node ifg € S. The run

G accepts the wora if all its infinite paths satisfy the acceptance conditienThus,

in the case of Bchi automata, all the infinite paths have infinitely manyodes. We
sometimes refer also to codBhi automata, where a run is accepting iff all its paths

% In general, runs of alternating automata are defined by means of infiaite. tBince we are
going to deal only with acceptance conditions that have memorylesswyartsn work instead
with DAGSs [4, 11].



have only finitely manyy-nodes. A wordw is accepted by if there a run that accepts
it. The language of, denotedL(.A), is the set of infinite words thad accepts.

We sometimes refer to automata in which the acceptancettammd defined with
respect to the transitions. Thus, such an automaton isetup! (¥, Q, ¢;n,0), where
the transition functionig : Q x ¥ — BT (Q x {L,T}), and a run is accepting if all
its paths contain infinitely many transitions with

When the formulas in the transition function df contain only conjunctions, then

A is universal. When they contain only disjunctions, thémns nondeterministic, and
its runs areDAGs of width 1, where at each level there is a single node. Adogly
we sometimes refer to the transition function of a nondeigistic automaton as :
Q x ¥ — 29, and refer to its runs as sequences qq, 1, . . . of states. We extendl
to sets of states, by lettin.5, a) = |, 0(¢, ), and recursively to words i, by
letting §(S,€) = S, andd (S, w - o) = 6(8(S, w), o), for everyw € X* ando € X. As
with words, we denote the subrunobetween positions, andts by r[t1,¢2]. The set
of states that a run or a subruwisits is denoted bytates(r).

Finally, we denote the different classes of automata byetletter acronyms in
{D,N,U,A} x {B, C} x {W}. The first letter stands for the branching mode of the
automaton (deterministic, nondeterministic, universealternating); the second letter
stands for the acceptance-condition typéd¢Bi or co-Bichi); and the third letter indi-
cates that the automaton runs on words. We add the prefix TRntotel automata with
acceptance on transitions. For example, TR-UBW stands forivgersal Bichi word
automaton with acceptance on transitions.

3 The Lower Bound

In this section we show that the breakpoint constructiorc@ueate, in the sense that it
keeps the exact data required for translating an ABW to an N&#rting with an ABW
with state spac€& and acceptance set(in fact, we even start with a UBW), the NBW
generated by the breakpoint construction has a state fargsac(S, O), whereS C @
andO C S\ a. We show that the construction is optimal, as an equival@WNnust,
essentially, have a different state corresponding to eath.$, O). Our proof basically
shows that the NBW must have a state corresponding to evergueh pairs, while for
simplicity reasons we ignore some cases, getting a corfstetior. Formally, we prove
the following.

Theorem 1. There is a family of UBW&,, Us, . . . over an alphabet of letters, such
that for everyn > 4, the UBW/,, hasn states, and every NBW equivalenip has at
least 3" states.

In [24], Yan presents the “full automata approach”, sugggsto seek for lower
bounds on automata with unbounded alphabets, allowing @essible transition. Only
then, should one try to implement the required rich traosgivia finite words over a
fixed alphabet. We adopt this approach, and further extehbitonly do we assume an
alphabet letter for every possible transition, but we alsoose whether the transition
visits the accepting states. For that reason, we start WRHJBWSs A,,, having the
acceptance condition on transitions rather than on stafeswards, we transform,,
to the required UBWH/,,, which is over a fixed alphabet and has acceptance on states.



The family of TR-UBWs. Foreveryn > 4, we define the TR-UBWA,, = (I, Q, J, ¢in ),
where@ = {q1,92,---,qn}, ¢%in = @1, @A = {reach(S), award(S, O), unify(S)
andconnect(S,0,0") : S C Q andd # O,0’ C S} is an alphabet consisting of four
types of letters. The transition function: Q x I" — 22*{T-1} is defined as follows
(see Figure 1):

— reach(S): reaching a subse&t C @ from ¢;, without a visit in an accepting transi-
tion. Formally,

Sx{l} ifqg=
5(q,7”6ach(5)):{@ { }otﬁervgilse.

— award (S, O): continuing the paths currently ifi and awarding those i® with a
visit in an accepting transition. Formally,

(q,T) ifge O
0(q, award(S,0)) =< {q,L) if g€ S\ O
0 otherwise.

We also refer tawward(S, (), defined in the same way.
— unify(S): connecting, without a visit in an accepting transition,sétes inS to
all states inS. Formally,

| Sx{l} ifqges
ata. () = {3 ) G e

— connect(S, 0, 0"): connecting, without a visit in an accepting transitioth séhtes
in O to all states irD’ and all states i \ O to all states inS. Formally,

O x {1} ifqge0
d(q, connect(S,0,0")) =< Sx{L} ifqge S\O
0 otherwise.

Consider an NBW5,, with state spac& and acceptance sgtequivalent to4,,.
For showing the correspondence between the stat8s ahd all possible pair§S, O),
we present a set of words InA,,) that will be shown to fully utilize the required state
space of3,,.

The words. For everyn > 4, consider the TR-UBWA,, defined above. We say that a
atriple(S,0,0') € 29 x29x2@ isrelevantif ) # O, 0’ C S. For every relevant triple
(S,0,0"), we define the infinite wordrs 0,0 = reach(S)-reward(S, 0, 0")*, where
reward (S, 0,0") = unify(S) - award(S, S\ O) - connect(S,0,0") - award(S,0’").

Lemma 1. For all relevant triples(S, O, O'), the wordwg o, o is in L(A,,).

Since the words are ifi(A,,), each has an accepting rug o o+ of the equivalent
NBW B,, on it. We first show that these runs are distinct for differgat

Lemma 2. Let r; and ro be accepting runs oB,, on w; = Ws,,0,,0] and wy =
ws,,0,,04, f€SPECtively. 151 # Sy, thenstates(rq[1, 0o]) N states(ra[1, oc]) = 0.



reach(S) award(S, {q2, q4,95})

unify(S) connect(S,{q3,q5},{q3,q4})
g1 92 g3 q4 gs

O

O

Fig. 1. An illustration of the required actions, f&t = {q2, g3, ¢4, g5 }. The doubled transitions
are accepting.

Replacing a lettetonnect(S, O, O’) inthe wordwg o o With aletterconnect (S, P, P’)
(of another tuple) may result in a word out bf.A,,). We say that a tupléS, P, P’} is
humbler thara tuple(S, O, O’} if the run of 4,, on award(S, S\O)- connect(S, P, P’)-
award (S, O") visits an accepting transition along every path that stargsstate inS.

Lemma 3. If (S, P, P’) is humbler than(S, O, 0’) thenO C Pand P’ C O'.

Letr be a specific accepting run o o’ of B, onwg,0,0-. Sincer goes infinitely
often along the subworgeward(S, O, O’), there is some statgvisited infinitely often
at the starting positions of the subworelvard(S, O, O’). Sincer is accepting, there
are cases in which visits 8 between two such visits af. That is, there are positions
t1 andty such thair(t1) = r(te) = g andstates(r[t1, t2]) N 3 # 0. We shall refer to
the subrun of- between positions; andt, as the loogs o,o-. Such a loop contains
at least one transition correspondingctainect (S, O, O’), going from some state to
some state. We refer tou andv as abridgefor (S, 0, 0’).

Assigning designated bridges to relevant triples. A bridge assignmerns a function
f 29 x29 x 29 — U x U. We say that a bridge assignmeftis good if for
every relevant triplé S, O, O’), the bridge(u,v) = f({S, 0, 0’)) satisfies one of the
following.

1. There is a transition from to v on connect(S, 0, 0’) alongls 0.0, and for all
relevant tripleg.S, P, P}, if there is a transition froma to v on connect(S, P, P’),
then(S, P, P') is humbler tha{.S, O, 0"}, or

2. (Intuitively, we cannot choose andv that satisfy the condition above, in which
case we choose a transition that visits an accepting stdejll pairs(u’,v') €
U x U, if there is a transition from’ to v’ on connect(S,0,0") alongls o o,
then there is a tuplésS, P, P’) such that there is a transition froni to v’ on



connect(S, P, P') and (S, P, P’} is not humbler thanS, 0, 0’), in which case
there is a transition from to v on connect(S, O, 0’) alongls o o that visits3. 4

Consider a relevant tupks, O, O’). If we cannot assign tQS, O, O’) a pair{(u, v)
that satisfies Condition (1) above, then all transitionsifioto v on connect (S, O, O’)
alongls o0 are also transitions along loops that are not accepting:eSine loop
ls 0,0’ does visit3, one of these transitions should visitand f can assign it. Hence
we have the following.

Lemma 4. There is a good bridge assignment.

Next, we show that every pair of states can serve as the askhgidge of at most
two relevant triples. Intuitively, since there are “mangfavant triples, this would imply
that “many bridges are needed”. Intuitively, it follows fincthe fact that, by Lemma 3,
if (S, P, P’) is humbler thar(S, O, 0’) and(S, O, O’) is humbler than(S, P, P’), then
O =PandO’ =P

Lemma 5. For every good bridge assignmefitand pair (u,v) € U x U, we have

I {{w )Pl < 2.

Fixed alphabet. The size of the alphabét of .4, is exponential im. From now on,
let us refer to the alphabet of,, asl;,. The UBWs U/,, we are after have an alphabet
X’ of 8 letters, and a single additional accepting state. U8ied letters it is possible
to simulate each of the letters € I, by a finite sequence of letters (whose length
depends on) in Y. In particular, the set of states visited wheis simulated includes
an accepting state iff the transition taken wheis read is accepting.

Lemma 6. There is a set”’ of size 8 such that for every > 4, there are functions
7: 0, — X andp : (QU {qacc}) x ¥ — 2@Yaacc} such that for ally € Q and
v eI, ifd(q,v) ={{g,b1),-..,{(Gm,bm)}, then the following hold.

= pl¢;7(v)) ={a1,--.,qm}, and
— Letr(y) = o1,...,00. Forall 1 < ¢ < m, and sequences, ...,r; such that

ro =¢,Tj+1 € p(rj,o;41) forall 1 < j <[, andr; = s;, there is0 < j < [ such
thatT’i = Gacc iff b, =T.

We can now complete the proof of Theorem 1. For evety 4, let B,, be an NBW
over the alphabet’ equivalent toA,,. We can partition an input word that simulate
the wordswg 0,0 to blocks, where each block corresponds to a lettdr,inWe refer
to a state of3,, that appears after reading a block as a “big-state”. Foryenepr 4,
consider the UBWY/,, with state spac€’ = {q1, ¢2, - . -, ¢n, ducc } that simulatesd,, as
described in Lemma 6, and an equivalent NB3). For every subset C Q' \ {qacc}
and nonempty subset3, 0’ C S there is the loofds oo/ of big-states in3,,. By
Lemma 2, the loops are distinct among the differ&stwith respect to their big-states.
Let X be the set of big-states in all the loops corresponding teeaifpS. We know
thatB, has atleast'sc g\ (q...1| X s| States.

4 Thus,u € S orv € 3; we still describe the condition in terms of the transition as it makes the
transformation to an automaton with a fixed alphabet clearer.



Let f be a good bridge assignment. By Lemma 4, such an assignfexists.
Consider a specific subs8tC Q' \ {qacc}. By Lemma 5, every pair of states g
can be the assigned bridge of at most two relevant triplésinx (25\ {5, 0}) x (29
{S,0}). There aré2!S! —2)2 such relevant triples. Thus, there are at lgast —2)2 /2

pairs of states itX . Therefore, there are at IeaEi:l;f\/‘i;2 > % states inXs. ° Hence,

there are at leas¥sc g\ (¢,..} 1 Xs| = ESQQ/\{qm}¥ = 33" states inB,. Starting
with a UBW withn + 1 states, we get a state blow-upgf"—! = £3".

Combined with the breakpoint construction, we have a tightridl for the trans-
lation of an ABW to an equivalent NBW. Applying the constiioctin [16] to UBW,
one ends up with a DBW. Since we described the lower boundjusBWs, we also
get a tight bound for alternation removal of UBW, and, dyaitydeterminization of

nondeterministic co-Bchi automata. Formally, we have the following.

Theorem 2. The tight bound for translating ABWs or UBWs to NBWs and faerde
minization of NCWs i®(3").

4 Ordered Automata

In Section 3 we showed that, in general, a blow-ugX§8™) cannot be avoided when
translating an ABW to an NBW. In this section we introduce arglore a subclass of
ABWs that can be translated to an equivalent NBW with a bloveignly n2™.

Definition 1. An automatond = (X, Q, 9, ¢;n, @) is orderedif there exists a partial
order <4 onQ@ \ «, such that for every, ¢’ € @\ aando € X, if ¢’ € §(¢,0), then
¢ <aq.

Note that, equivalentlyd is ordered if the only cycles consisting solely of statesimot
« are self loops.

The order property is less restrictive than the very-weaid@mn of [10]. To demon-
strate this extra strength, we describe below the ordered/ Ad the property “when-
ever there igequest thentry andack alternate untilgrantis valid” over the alphabet
X = 24P ‘whereAP = {try,ack,req, grant}. Since the ABW has a single rejecting
state, it is obviously ordered. Note that this property carre specified in LTL orin a
very weak ABW. Note also how the ordered ABW uses universahtines in order to
allow thetry-ack cycle to be accepting. Indeed, fulfilling the eventualityaken care
by a different copy of the ABW.

The automata used in the lower-bound proof have the progeatyevery two states
not in « are reachable from each other without an intermediate tasit In a sense,
this property is an antipode of the order property presemtéaefinition 1. We argue
that violating the order property is what forces an equiveldBW to associate its states
with two subsets of states of the ABW. Indeed, as we show hedawABW that has
the order property can be translated to an equivalent NBW arit2™ blow-up. Still,
even for ordered automata, the NBW needs to maintain infdiomé&eyond the subset
construction, thus the2™ translation is tight.

5 This > is not correct for a very small subs§t but since we accumulate over all the subsets,
the total sum does satisfy it.



—grant

—req grant

Fig. 2. An ordered ABW specifying “whenever therersquest thentry andack alternate un-
til grantis valid”. For a propositional assertighover AP, a transition labeled stands for a
transition with all the letters- € 247 that satisfyf.

Theorem 3. The tight bound for translating an ordered ABW to an NBW {22™).

Proof. We start with the upper bound. Let = (¥, Q, 6, ¢in, o) be an ordered ABW,
and let< 4 be an extension of the partial order gh\ « to a total order orQ. Let
|Q| = n. The order< 4 allows us to identifyQ with {1,2,...,n} while preserving the
natural order. We define the equivalent NBYW = (¥, @', ¢, ¢.,,, ') as follows.

- Q' C29x (Q\auU{0})issuchthalS,p) € Q' iff p € (S\ a)U{0}. Intuitively,
the setS follows the subset construction applied #b when A is in a state in

S x {0,...,n}, the word in the input should be accepted from all the states i
S. Note that sinced is alternating, there may be several sgtghat are possible
successors of a sét Since the input word should be accepted from all the states
in S, all the paths that start in states.$hshould not get trapped in a state not in
a. To ensure thisd’ examines the states notdnin a round-robin fashion: at each
moment it examines a single state= S \ « and makes sure that no path in the
run of A gets trapped ip: as long a® is a successor of itself, it keeps examining
p. Only when a chain of’s ends (either becaugeis not in .S’ or because is in

S’ but is not a successor of itself)\’ changes the examined state, to the maximal
state inS’ that is smaller thap. If no such state existsd’ setsp to 0. As would be
made clear below, this earp§ a visit in the set of accepting states, and causes it
to start a new round of checks.

q;n = <{q1n}70>

In order to define the transition function, we first define action next : 29 x

29 x {0,...,n} x ¥ — {0,...,n}, which returns the next state that should be
examined by4’. Formally,next(S, S’, p, o) is (we fixmax()) = 0):

p if p# 0andS"\ {p} # d(p,0)
max({q|qge S\ (aU{p})Aqg<p})if p#0ands’\ {p} = d(p,0)
max (S’ \ «) ifp=0

Now, 6’ ((S, p), o) = {(S’, next(S,S",p,0)) | S’ = 6(S,0)}.

Thus, each transition guesses the next¥eind updates the examined new state
accordingly.

- o/ =29 x {0}.

We now turn to the lower bound. The lower bound of Theorem 1sdu# hold

for ordered UBWs as the UBW#, used there are, obviously, not ordered. In order to
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prove anf2(n2") lower bound, we argue that the actiorach() and award() can be
simulated by an ordered UBW over an alphabet whose sizediarinn, and that using
them we can point to words that force the NBW to have at I€4s2™) states.

For everyn > 4, consider the TR-UBW/,, defined in Section 3. Using the actions
reach() and award(), one can define for every st C Q \ {gacc} the wordw, =
reach(S)-reward(S)*, wherereward(S) = e4cs award(S, {q}). These words belong
to L(A,,), entailing for everyS a distinct loop of states in an equivalent NBW. We
show that the restriction aofl,,, having only thereach() and award() actions, can be
simulated by an ordered UBW),, over an alphabet whose size is linearrinand
that each such loop of big states in an NBW equivalenPfohas at leastS| states,
providing the required lower bound &fsc|S| = £2(n2™).

4.1 Fixed Alphabet

Usually, the alphabet size does not influence the state bfpwwolved in automata
translation. This is also the case with the translation oWsBto NBWSs, as shown
in Section 3. Yet, ordered UBWSs provide an interesting exangbla case in which
the alphabet size does matter. While Theorem 3 provide@(@2™) lower bound for
the translation of an ordered UBW to an equivalent NBW, wensbelow that the
translation can be done with onfy(2™) state blow-up over a fixed alphabet.

Theorem 4. An ordered UBW with states over an alphabet witte letters has an
equivalent DBW witl2™ " states.

Proof. Let A = (¥, Q, 4, ¢in, ). We defined’ = (¥, Q', 4, ¢.,,, '), where

— Q' =29 x 2% Intuitively, the2? component is a simple subset construction. The
2% component has the task of maintaining a set of letters rigcesdd from the
input word, with the property that all suffixes consistingiesty of letters from this
set are rejected hyl.

— For a stat€S, P), we say thatP detainsS if there is a statg € S \ « such that
for every lettero € P, we haveg € 6(q, o). Now, for all stategS, P) € @’ and
o € X, we define

(0(S,0),PU{c}) if PU{c} detainsS.

'((S, P),0) = (6(S, ), 0) otherwise.

That is, the2? component follows the subset construction, while the curetter
is added to the* component as long as the required property (which is ecuival
to P U {o} detainingS) is retained. So a path in a run gf gets trapped in some
stateq iff the 2> component manages to avoid the empty set thanks to

= i = {qin}, 0).

- o =29 x {0}

Remark 1. It is shown in [18] that the breakpoint construction is valiien applied
to alternating Bichi tree automata. Our lower bound proof clearly holds &dsalter-
nation removal in tree automata. As for the upper bound,ribishard to see that the
definition of ordered automata can be extended to the saifitrge automata, and that
both translations in Theorems 3 and 4 stay valid in thisrsgtti
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