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Abstract. The Church-Turing Thesis has been the subject of many
variations and interpretations over the years. Specifically, there are ver-
sions that refer only to functions over the natural numbers (as Church
and Kleene did), while others refer to functions over arbitrary domains
(as Turing intended). Our purpose is to formalize and analyze the thesis
when referring to functions over arbitrary domains.

First, we must handle the issue of domain representation. We show
that, prima facie, the thesis is not well defined for arbitrary domains,
since the choice of representation of the domain might have a non-trivial
influence. We overcome this problem in two steps: (1) phrasing the thesis
for entire computational models, rather than for a single function; and
(2) proving a “completeness” property of the recursive functions and
Turing machines with respect to domain representations.

In the second part, we propose an axiomatization of an “effective
model of computation” over an arbitrary countable domain. This axiom-
atization is based on Gurevich’s postulates for sequential algorithms. A
proof is provided showing that all models satisfying these axioms, re-
gardless of underlying data structure, are of equivalent computational
power to, or weaker than, Turing machines.

1 Introduction

Background. In 1936, Alonzo Church and Alan Turing each formulated a claim
that a particular model of computation completely captures the conceptual no-
tion of “effective” computability. Church [5, p. 356] proposed that effective com-
putability of numeric functions be identified with Gödel and Herbrand’s general
recursive functions, or – equivalently, as it turned out [5] – with Church and
Kleene’s lambda-definable functions of positive integers. Similarly, Turing [31]
suggested that his computational model, namely, Turing machines, could com-
pute anything that might be mechanically computable, but his interests extended
beyond numeric functions.
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Church’s original thesis concerned functions over the natural numbers with
their standard interpretation [5, p. 346, including fn. 3] (emphasis ours):

The purpose of the present paper is to propose a definition of effective
calculability. As will appear, this definition of effective calculability can
be stated in either of two equivalent forms, (1) that a function of positive
integers will be called effectively calculable if it is λ-definable. . . , (2) that
a function of positive integers shall be called effectively calculable if it is
recursive. . . .

Kleene, when speaking about Church’s Thesis, also refers to functions over the
natural numbers [13, pp. 58, 60] (emphasis ours):

We entertain various proposition about natural numbers . . . This heuris-
tic fact [all recognized effective functions turned out to be general recur-
sive], as well as certain reflections on the nature of symbolic algorithmic
processes, led Church to state the following thesis. The same thesis is
implicit in Turing’s description of computing machines.
THESIS I. Every effectively calculable function (effectively decidable
predicate) is general recursive.

Turing, on the other hand, explicitly extends the notion of “effective” beyond
the natural numbers [32, fn. p. 166] (emphasis added):

We shall use the expression “computable function” to mean a function
calculable by a machine, and we let “effectively calculable” refer to the
intuitive idea without particular identification with one of these defini-
tions. We do not restrict the values taken by a computable function to
be natural numbers ; we may for instance have computable propositional
functions.

But for Turing, even numerical calculations operate on their string representation.
Turing’s model of computability was instrumental in the wide acceptance of

Church’s Thesis. As Trakhtenbrot explained [30]:

This is the way the miracle occurred: the essence of a process that can be
carried out by purely mechanical means was understood and incarnated
in precise mathematical definitions.

The Problem. Let f be some decision function (a Boolean-valued function) over
an arbitrary countable domain D. What does one mean by saying that “f is
computable”? One most likely means that there is a Turing machine M , such
that M computes f , using some string representation of the domain D. But
what are the allowed string representations? Obviously, allowing an arbitrary
representation (any injection from D to Σ∗) is problematic – it will make any
decision function “computable”. For example, by permuting the domain of ma-
chine codes, the halting function can morph into the simple parity function,
which returns true when the input number is even, representing a halting ma-
chine, and false otherwise). Thus, under a “strange” representation the function
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becomes eminently “computable” (see Sect. 2.1). Another approach is to allow
only “natural” or “effective” representations. However, in the context of defin-
ing computability, one is obliged to resort to a vague and undefined notion of
“naturalness” or of “effectiveness”, thereby defeating the very purpose of char-
acterizing computability.

Our Solution. Our approach to overcoming the representation problem is to ask
about effectiveness of a set of functions over the domain of interest, rather than of
a single function. As Myhill observed [19], undecidability is a property of classes
of problems, not of individual problems. In this sense, the halting function is
undecidable in conjunction with an interpreter (universal machine) for Turing
machine programs that uses the same representation. The Church-Turing Thesis,
interpreted accordingly, asserts that there is no effective computational model
that is more inclusive than Turing machines.

Nonetheless, there remains a potentially serious problem. Let M be a compu-
tational model (computing a set of functions) over some countable domain D.
Might it be the case that the set of functions that M computes is equal to the
Turing-computable functions under one string representation, but strictly con-
tains it under a different representation? Generally speaking, this could indeed
be the case when comparing arbitrary computational models. For example, the
standard two-counter machine model (2CM) is strictly contained in some mod-
els, while it also strictly contains them – all depending on the choice of domain
representation.

Fortunately, this cannot be the case with Turing machines (nor with the re-
cursive functions), as we have demonstrated in [4], where we proved that Turing
machines are “complete” in the sense that if some model is equivalent to, or
weaker than, Turing machines under one representation, then no other represen-
tation (no matter how “strange”) can make it stronger than Turing machines.
Hence, the Church-Turing Thesis is well-defined for arbitrary computational
models.

Due to this completeness of Turing machines, we can also sensibly define what
it means for a string representation of an arbitrary domain to be “effective”.

Axiomatization. Equipped with a plausible interpretation of the Church-Turing
Thesis over arbitrary domains, we investigate the general class of “effective com-
putational models”. We proffer an axiomatization of this class, based on Yuri
Gurevich’s postulates for a sequential algorithm [11]. The thesis is then proved,
in the sense that a proof is provided that all models satisfying these axioms are
of equivalent power to, or weaker than, Turing machines.

Gurevich’s postulates are a natural starting point for computing over arbi-
trary domains. They are applicable for computations over any mathematical
structure and aim to capture any sequential algorithm. Nevertheless, while the
computation steps are guaranteed to be algorithmic, that is, effective, the initial
states are not. In addition, the postulates refer to a single algorithm, while
effectiveness should consider, as explained above, the whole computational
model. We address the effectiveness of the initial state by adding a fourth axiom
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to the three of Gurevich. The effectiveness of an entire computational model is
addressed by providing a minimal criterion for two sequential algorithms to be
in the same model.

This direction of research follows Shoenfield’s suggestion [25, p. 26]:

[I]t may seem that it is impossible to give a proof of Church’s Thesis.
However, this is not necessarily the case.. . . In other words, we can write
down some axioms about computable functions which most people would
agree are evidently true. It might be possible to prove Church’s Thesis
from such axioms.

In fact, Gödel has also been reported (by Church in a letter to Kleene cited
by Davis in [7]) to have thought “that it might be possible . . . to state a set
of axioms which would embody the generally accepted properties of [effective
calculability], and to do something on that basis”.

Thanks to Gurevich’s Abstract State Machine Theorem, showing that sequen-
tial abstract state machines (ASMs) capture all (ordinary, sequential) algorithms
(those algorithms that satisfy the three Abstract State Machine postulates), we
get a third definition of an effective computational model: A model that consists
of ASMs that share initial states satisfying the initial-state axiom.

The specifics of our effectiveness axiom may perhaps be arguable. Neverthe-
less, it demonstrates the possibility of such an axiomatization of effectiveness for
arbitrary domains, and provides evidence for the validity of the Church-Turing
Thesis, regardless of underlying data structure and internal mechanism of the
particular computational model.

The relationship of the three approaches to characterizing effectiveness over
arbitrary domains is summarized in Sect. 3.4 and depicted in Fig. 1.

Axioms of Effectiveness. We understand an “effective computational model” to
be some set of “effective procedures”. Since all procedures of a specific compu-
tational model should have some common mechanism, a minimal requirement is
that they share the same domain representation (“base structure”). Any “effec-
tive procedure” should satisfy four postulates (formally defined as Axioms 1–4
in Sects. 3.2–3.3):

1. Sequential Time. The procedure can be viewed as a set of states, specified
initial states, and a transition function from state to state.
This postulate reflects the view of a computation as some transition system,
as suggested by Knuth [14, p. 7] and others. Time is discrete; transitions are
deterministic; transfinite sequences are not relevant.

2. Abstract State. Its states are (first-order) structures sharing the same
finite vocabulary. States are closed under isomorphism, and the transition
function preserves isomorphism.
Formalizing the states of the transition system as logical structures follows
the proposal of Gurevich [11, p. 78]. This is meant to be fully general, al-
lowing states to contain all salient features.
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Church-Turing
Thesis

A model A looks effective
if it can be represented by

a set of
Turing-computable functions

A � TM

(Sect. 2)

Effectiveness
Axiomatization

A model A looks effective
if it is co-extensive with

a model B satisfying
the effectiveness axioms

∃ effective B. [[A]] = [[B]]

(Sect. 3)

Effective
ASMs

A model A looks effective
if it is co-extensive with

ASMs with
effective initial data

∃ ESMB. [[A]] = [[B]]

(Appendix)

Theorem 4

Claim 1

Lemma 1

Lemma 2
Claim 2

Fig. 1. Equivalent characterizations of an extensional effectiveness of a computational
model over an arbitrary domain

3. Bounded Exploration. There is a finite bound on the number of
vocabulary-terms that affect the transition function.
This postulate ensures that the transition system has effective behavior.
Informally, this means that it can be described by a finite text that explains
the algorithm without presupposing any special knowledge.

4. Initial Data. The initial state comprises only finite data in addition to the
domain representation. The latter is isomorphic to a Herbrand universe.
The fourth postulate restricts procedures to be wholly effective by insisting
on the effectiveness of the initial data, in addition to the effectiveness of the
algorithm.

The freedom to add any finite data is obvious, but why do we limit the
domain representation to be isomorphic to a Herbrand universe? There are two
limitations here: (a) every domain element has a name (a closed term); and (b)
the name of each element is unique. Were we to allow unnamed domain elements,
then a computation could not be referred to, nor repeated, hence would not be
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effective. As for the uniqueness of the names, allowing a built-in equality notion
with an “infinite memory” of equal pairs is obviously non-effective. Hence, the
equality notion should be the result of some internal mechanism, one that can
be built up from scratch.

Previous Work. Usually, the handling of multiple domains in the literature is
done by choosing specific representations, like Gödel numbering, Church numer-
als, unary representation of numbers, etc. This is also true of the usual handling
of representations in the context of the Church-Turing Thesis.

Richard Montague [18] raises the problem of representation when applying
Turing’s notion of computability to other domains, as well as the circularity in
choosing a “computable representation”.

Stewart Shapiro [24] raises the very same problem of representation when
applying computability to number-theoretic functions. He suggests a defini-
tion of an “acceptable notation” (an acceptable string representation of nat-
ural numbers), based on some intuitive concepts. We discuss Shapiro’s notion in
Sects. 2.1 and 2.5.

Klaus Weihrauch [33,34] deals heavily with the representation of arbitrary
domains by numbers and strings. He defines computability with respect to a
representation, and provides justifications for the effectiveness of the standard
representations. We elaborate on his justifications in Sect. 2.5.

After overcoming the problem of defining the Church-Turing Thesis over ar-
bitrary domains, we suggest, in Sect. 2.5, a definition of an “effective representa-
tion”, resembling Shapiro’s notion of “acceptable notation” and along the lines
of Weihrauch’s justifications for the effectiveness of the standard representations.

Michael Rescorla claims in a recent paper [21] that the Church-Turing Thesis
has inherent circularity because of the above problem of representing numbers
by strings. He is not satisfied with Shapiro’s definition of an acceptable notation,
finding it insufficiently general.

A more general approach for comparing the power of different computational
models would be to allow any representation based on an injective mapping
between their domains. This is done, for example, by Rogers [22, p. 27], Som-
merhalder [29, p. 30], and Cutland [6, p. 24]. A similar approach is used for
defining the effectiveness of an algebraic structure by Froehlich and Shepherd-
son [9], Rabin [20], and Mal’cev [16]. Our notion of comparing computational
power is very similar to this.

To the best of our knowledge, our work in [2,4] was the first to point out
and handle the possible influence of the representation on the extensionality of
computational models.

As for the axiomatization of effectiveness, several different approaches have
been taken over the years. Turing [31] already formulated some principles for ef-
fective sequential deterministic symbol manipulation: finite internal states; finite
symbol space; external memory that can be represented linearly; finite observ-
ability; and local action.

Robin Gandy [10], and later Sieg and Byrnes [28], define a model whose
states are described by hereditarily finite sets. Effectiveness of Gandy machines
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is achieved by bounding the rank (depth) of states, insisting that they be un-
ambiguously assemblable from individual “parts” of bounded size, and requiring
that transitions have local causes.1

In [3], we proposed effectiveness axioms, but gave no proof that the axioms
yield the same definition of effectiveness as does the Church-Turing Thesis.
Whereas Turing machine states involve a linear sequence of symbols, and Gandy
machine states are hereditarily finite sets, our axioms are meant to apply to ar-
bitrary (countable) domains.

In [8], Gurevich and the second author provide an axiomatization of Church’s
Thesis based on the Abstract State Machine Thesis. They handle only numeric
functions, ignoring the issue of effective computation over arbitrary domains,
but allowing the use of domains richer than just the numbers.

Overview. The first part of this paper, Sect. 2, deals with the issue of domain
representation. In Sect. 2.1, we show that checking for the computability of a
single function over an arbitrary domain is problematic due to the influence of
the domain representation. As a result, we interpret the Church-Turing Thesis
for entire computational models. In Sect. 2.2 we define the notion of power
comparison between computational models, required for the above interpretation
of the thesis. In Sect. 2.3 we show that the representation might generally have an
influence even on entire computational models. In Sect. 2.4 we solve the above
problem with relation to the Church-Turing Thesis, by taking advantage of a
“completeness” property enjoyed by the recursive functions and Turing machines
with respect to domain representations. We conclude this part by discussing, in
Sect. 2.5, what are in fact “effective representations”.

The second part, Sect. 3, proposes an axiomatization of an “effective model of
computation” over an arbitrary countable domain. In Sect. 3.2, we axiomatize
“sequential procedures” along the lines of Gurevich’s postulates for a sequential
algorithm. In Sect. 3.3, we axiomatize “effective models” on top of sequential
procedures by adding a fourth axiom, requiring the effectiveness of the initial
state. We then show, in Sect. 3.4, that Turing machines, which constitute an
effective model, are at least as powerful as any effective model. We conclude
with a brief discussion. The proofs of this part are given in the Appendix.

We employ Gurevich’s most general “Abstract State Machines” (ASMs) [11]
as our programming paradigm.2 Gurevich’s ASM Theorem [11] shows that (se-
quential) ASMs capture (sequential) algorithms, the latter defined axiomatically.
As a result, we get a third definition of an effective computational model over an
arbitrary domain, namely programmable as an ASM satisfying the extra initial
state axiom. See Sect. 3.4 and Fig. 1.

Terminology. When we speak of the recursive functions, denoted REC, we mean
the partial recursive functions. Similarly, the set of Turing machines, denoted
TM, includes both halting and non-halting machines; we use TM for the set of
1 The explicit bound on rank is removed in Sieg’s more recent work [26,27].
2 Some of the problems of incorporating the Gandy model under the abstract state

machine rubric are dealt with in [1].
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string functions computed by TMs. We use the term “domain” of a computa-
tional model and of a (partial) function to denote the set of elements over which
it operates, not only those for which it is defined. By “image”, we mean the
values that a function actually takes: Im f := {f(x) | x ∈ Dom f}.

2 Arbitrary Domains

Simply interpreted, the Church-Turing Thesis is not well defined for arbitrary
domains: the choice of domain representation might have a significant influence
on the outcome. We explore below the importance of the domain representation
and suggest how to overcome this problem.

2.1 Computational Model Versus Single Function

A single function over an arbitrary domain cannot be classified as computable
or not. Its computability depends on the representation of the domain.3 For
example, as mentioned above, the (uncomputable) halting function over the
natural numbers (sans the standard order) is isomorphic to the simple parity
function, under a permutation of the natural numbers that maps the usual codes
of halting Turing machines to strings ending in “0”, and the rest of the numbers
to strings ending with “1”. The result is a computable standalone “halting”
function.

An analysis of the classes of number-theoretic functions that are computable
relative to different notations (representations) is provided by Shapiro [24, p. 15]:

It is shown, in particular, that the class of number-theoretic functions
which are computable relative to every notation is too narrow, contain-
ing only rather trivial functions, and that the class of number-theoretic
functions which are computable relative to some notation is too broad
containing, for example, every characteristic function.

An intuitive approach is to restrict the representation only to “natural” map-
pings between the domains. However, when doing so in the scope of defining
“effectiveness” one must use a vague and undefined notion.

This problem was already pointed out by Richard Montague on 1960 [18, pp.
430–431]:

Now Turing’s notion of computability applies directly only to functions
on and to the set of natural numbers. Even its extension to functions
defined on (and with values in) another denumerable set S cannot be ac-
complished in a completely unobjectionable way. One would be inclined
to choose a one-to-one correspondence between S and the set of natural

3 There are functions that are inherently uncomputable, regardless of the domain
representation. For example, a permutation of some countable domain, in which the
lengths of the orbits are exactly the standard encodings of the non-halting Turing
machines.



The Church-Turing Thesis over Arbitrary Domains 207

numbers, and to call a function f on S computable if the function of
natural numbers induced by f under this correspondence is computable
in Turing’s sense. But the notion so obtained depends on what corre-
spondence between S and the set of natural numbers is chosen; the sets
of computable functions on S correlated with two such correspondences
will in general differ. The natural procedure is to restrict consideration
to those correspondences which are in some sense ‘effective’, and hence
to characterize a computable function on S as a function f such that, for
some effective correspondence between S and the set of natural numbers,
the function induced by f under this correspondence is computable in
Turing’s sense. But the notion of effectiveness remains to be analyzed,
and would indeed seem to coincide with computability.

Stewart Shapiro suggests a definition of “acceptable notation”, based on sev-
eral intuitive concepts [24, p. 18]:

This suggests two informal criteria on notations employed by algorithms:
(1) The computist should be able to write numbers in the notation. If

he has a particular number in mind, he should (in principle) be able
to write and identify tokens for the corresponding numeral.

(2) The computist should be able to read the notation. If he is given a
token for a numeral, he should (in principle) be able to determine
what number it denotes.

It is admitted that these conditions are, at best, vague and perhaps
obscure.

Michael Rescorla argues that the circularity is inherent in the Church-Turing
Thesis [21]:

My argument turns largely upon the following constraint: a success-
ful conceptual analysis should be non-circular . . . . I will suggest that
purported conceptual analyses involving Church’s thesis generate a sub-
tle yet ineliminable circularity: they characterize the intuitive notion of
computability by invoking the intuitive notion of computability. . . . So
that syntactic analysis can illuminate the computable number-theoretic
functions, we correlate syntactic entities with non-syntactic entities like
numbers. We endow the syntax with a primitive semantics. I submit
that, in providing this semantics, we must deploy the intuitive notion
of computability. Specifically, we must demand that the semantic cor-
relation between syntactic entities and non-syntactic entities itself be
computable. But then the proposed analysis does not illuminate com-
putability non-circularly.

A possible solution is to allow any representation (injection between domains),
while checking for the effectiveness of an entire computational model. That is, to
check for the computability of a function together with the other functions that
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are computable by that computational model. The purpose lying behind this idea
is to view the domain elements as arbitrary objects, deriving all their meaning
from the model’s functions. For example, it is obvious that the halting function
has a meaning only if one knows the order of the elements of its domain. In that
case, the successor function provides the meaning for the domain elements.

A variation of this solution is to allow any representation (injection between
domains), provided that the image of the injection is computable. We consider
both variations.

Adopting the above approach of checking for computability of an entire com-
putational model, we interpret the Church-Turing Thesis as follows:

Thesis A. All “effective” computational models are of equivalent power
to, or weaker than, Turing machines.

By “effective”, in quotes, we mean effective in its intuitive sense.
To understand this thesis, it remains for us to define what it means to be

“equivalent to, or weaker than”. That is, we must define a method by which to
compare computational power of computational models.

For maximum generality, we do not want to limit computational models to
any specific mechanism; hence, we allow a model to be any object, as long as
it is associated with the set of functions that it implements. We consider only
deterministic computations, as originally envisioned in Hilbert’s program (see
[8]). As models may have non-terminating computations, we deal with sets of
partial functions. For convenience, we assume that the domain and range (co-
domain) of functions are identical.

Definition 1 (Computational Model)

– A computational model B over domain D is any object associated with a set
of partial functions f : D → D. This set of functions is called the extension-
ality of the computational model, denoted [[B]].

– We write Dom B for the domain over which model B operates.

2.2 Comparing Computational Power

Since we are dealing with models that operate over different domains, we adopt
the quasi-ordering on extensional power developed in [2,4]. Basically, we say that
model A is at least as powerful as model B if there is some representation via
which A contains all the functions of B. A representation may be any injection
between the domains (a generalization to mappings other than injections can
be found in [2]). A variation of the above requires that the “stronger” model
would also be able to compute the image of the representation. We formalize the
comparison notion below.

A computational model is associated with a set of functions (see Definition 1),
and its representation over a different domain is just the result of some renaming
of the underlying domain elements.
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Definition 2 (Representation)

Domain. Let DA and DB be two domains (arbitrary sets of atomic elements).
A representation of DB over DA is an injection ρ : DB → DA (i.e. ρ is total
and one-one). We write Im ρ for the image of the representation (the values
in DB that ρ takes).

Function and Relation. Representations naturally extend to func-
tions and relations, which are sets of tuples of domain elements: ρ(f) :=
{〈ρ(x1), . . . , ρ(xn)〉|〈x1 , . . . , xn〉 ∈ f}.

Model. Representations also naturally extend to (the extensionalities of) com-
putational models, which are sets of functions: ρ(B) := {ρ(f) | f ∈ [[B]]}.

Since representations are allowed to be arbitrary injections, they might not cover
the target domain. Hence, when we compare a model A with a representation of
some model B, we should restrict A to the image of the representation.

Definition 3 (Restriction)

1. A restriction of a function f over domain D to a subdomain C ⊆ D, denoted
f �C , is the subset of tuples of f in which all elements are in C. That is,
f�C := f ∩ Cn+1, for f of arity n.

2. We write ρ(f) ∈ [[A]] as shorthand for ∃g ∈ [[A]]. ρ(f) = g�Im ρ, meaning that
the function f belongs to the (restriction of) the computational model A via
representation ρ.

We can now provide the appropriate comparison notion.

Definition 4 (Computational Power)

– Model A is (computationally) at least as powerful as model B, denoted A �
B, if there is a representation ρ such that ρ(B) ⊆ {f �Im ρ | f ∈ [[A]]}. In
such a case, we also say that model A simulates model B (via representation
ρ).

– Models A and B are (computationally) equivalent if A � B � A.

This is the notion of “implemented” used in [12, p. 52] and of “incorporated”
used in [29, p. 29].

Proposition 1. The computational power relation � between models is a quasi-
order. Computational equivalence is an equivalence relation.

Turing-computable functions simulate the recursive functions via a unary repre-
sentation of the natural numbers. The (untyped) λ-calculus (Λ) is computation-
ally equivalent to the recursive functions (REC), via Church numerals, on the
one hand, and via Gödelization, on the other.

One may reasonably require that for a model A to be at least as powerful as
a model B it should also be able to compute the image of the representation
(see [2]). In such a case we get the following variation of the power comparison
notion:
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Definition 5 (Representational Power)

– Model A is (representationally) at least as powerful as model B, denoted
A 	 B, if there is a representation ρ such that ρ(B) ⊆ {f�Im ρ | f ∈ [[A]]}
and there is a total function f ∈ [[A]], such that Im f = Im ρ.

– Models A and B are (representationally) equivalent if A 	 B 	 A.

In what follows, we use both computational comparisons (�) and representa-
tional comparisons (	), preferring the more general one whenever possible.4

Our interpretation of the Church-Turing Thesis (Thesis A) agrees with Ra-
bin’s definition of a computable group [20, p. 343]:

DEFINITION 3. An indexing of a set S is a one to one mapping i : S → I
such that i(S) is a recursive subset of I. . . .
DEFINITION 4. An indexing i of a group G is admissible if the function
m from i(G) × i(G) into i(G) . . . is a computable function. . . .
DEFINITION 5. A group is computable if it possesses at least one ad-
missible indexing.

Rabin defines computability for groups, fields, and rings; however, the idea
naturally generalizes to any algebraic structure, as done by Lambert [15, p. 594]:

Following Rabin . . . we let an (admissible) indexing for structure U be a
1-1 function κ : A → ω such that
(i) K = range κ is recursive;
(ii) each κ∗(Fa) and κ∗(Ra) are recursive relative to K . . . , where κ∗

applied to an (unmixed) operation or relation in A is the operation or
relation in ω naturally induced by κ.. . .
U is computable iff there is an indexing for U.

Similar notions were also presented by Froehlich and Shepherdson [9] and
Mal’cev [16].

2.3 Influence of Representations

It turns out that even when dealing with entire computational models, we are
not yet on terra firma. The representation of the domain still allows for the
possibility that a model be equivalent to one of its strict supermodels. That is, a
representation might allow to “enlarge” a model, adding some “new” functions
to it.
4 Specifically, the “completeness” property (Definition 6) is defined using �, which

makes it stronger. Accordingly, the theorem that Turing machines and recursive
functions are complete (Theorem 1) applies also to the analogous case with � instead.
Likewise, when we show that Turing machines are at least as powerful as any effective
model (Theorem 4, per Definition 17), we use the � notion, which provides a
stronger result. Thus, the theorem applies also to the analogue �. On the other
hand, Claims 1 and 2 are stated with respect to �, and do not necessarily hold
for �.
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Consider two-counter machines. It is known that two-counter machines cannot
compute the function λx.2x.5 On the other hand, since two-counter machines
can simulate all the recursive functions via some proper injective representation
(viz. n 
→ 2n; see, for example, [17]), it follows that two-counter machines can
“enlarge” their computational power via some representations.

A reasonable direction might have been to restrict the representation to bi-
jections between domains. However, while it works for this example, it turns out
that there are models equivalent to some of their supermodels even with bijective
representations [4]. Hence, there are models isomorphic to some of their strict
supermodels.

This places a question mark on the definition of Turing-computability and on
the meaning of the Church-Turing Thesis. Can it be that the recursive functions
are isomorphic to a larger set of functions?! Can we find a string representation
of the natural numbers via which we have Turing machines to compute all the
recursive functions plus some additional functions?

In the next section, we put firmer ground beneath the definition of the Church-
Turing Thesis, by showing that Turing machines, as well as the recursive func-
tions, enjoy a special “completeness” property.

2.4 Completeness

As seen above, a model can be of equivalent power to its strict supermodel.
There are, however, models that are not susceptible to such an anomaly; these
are referred to as “complete” models, among which are Turing machines and the
recursive functions.

Definition 6 (Completeness). A model is complete if it is not of equivalent
power to any of its strict supermodels. That is, A is complete if A � B and
[[B]] ⊇ [[A]] imply that [[A]] = [[B]] for any B.

A supermodel of the recursive functions (or Turing machines) is a “hypercom-
putational” model.

Definition 7 (Hypercomputational Model). A model H is hypercomputa-
tional if it simulates a model that strictly contains the recursive functions.

Theorem 1 ([4]). The recursive functions and Turing machines are complete.
They cannot simulate any hypercomputational model.

(The completeness of the recursive functions proved in [4] refers only to unary
functions, but it is quite straightforward to extend it to any arity.)

Note that the completeness property is defined with computational compar-
ison �, which makes it a stronger property. Accordingly, Turing machines and
the recursive functions are also complete with respect to representational com-
parison 	.
5 This was shown by Rich Schroeppel in [23], and independently by Frances Yao and

others.
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The Church-Turing Thesis, as interpreted in Sect. 2.1, matches the intuitive
understanding only due to this completeness of the recursive functions and Tur-
ing machines. Were the thesis defined in terms of two-counter machines (2CM),
for example, it would make no sense: a computational model is not necessarily
stronger than 2CM even if it computes strictly more functions.6

2.5 Effective Representations

What is an effective representation? We argued above that a “natural represen-
tation” must be a vague notion when used in the context of defining effectiveness.
We avoided the need of restricting the representation by checking the effective-
ness of entire computational models. But what if we adopt the Church-Turing
Thesis; can we then define what is an effective string representation?

Simply put, there is a problem here. Turing machines operate only over strings.
Thus a string representation, which is an injection from some domain D to Σ∗,
is not itself computable by a Turing machine. All the same, when we consider,
for example, string representations of natural numbers, we can obviously say
regarding some of them that they are effective. How is that possible? The point
is that we look at a domain as having some structure. For the natural numbers,
we usually assume their standard order. A function over the natural numbers
without their order is not really well-defined. As we saw, the halting function
and the simple parity function are exactly the same (isomorphic) function when
numbers are unordered.

Hence, even when adopting the Church-Turing Thesis, a domain without any
structure cannot have an effective representation. It is just a set of arbitrary
elements. However, if the domain comes with a generating mechanism (as the
natural numbers come with the successor) we can consider effective representa-
tions.

Due the completeness of the recursive functions and Turing machines, we can
define what is an effective string representation of the natural numbers (with
their standard structure). A similar definition can be given for other domains,
besides the natural numbers, provided that they come with some finite means
of generating them all, akin to successor for the naturals.

Definition 8. An effective representation of the natural numbers by strings is
an injection ρ : N → Σ∗, such that ρ(s) is Turing-computable (ρ(s) ∈ TM),
where s is the successor function over N.

That is, a representation of the natural numbers is effective if the successor
function is Turing-computable via this representation.

Remark 1. One may also require that the image of the representation ρ is totally
Turing computable, meaning, that the question whether some string is in Im ρ
is decidable.
6 In fact, the lambda calculus also suffers from incompleteness in this sense, and would,

therefore, not be a suitable candidate in terms of which to characterize generic
effectivity.
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We justify the above definition of an effective representation by showing that:
(a) every recursive function is Turing-computable via any effective representa-
tion; (b) every non-recursive function is not Turing-computable via any effective
representation; and (c) for every non-effective representation there is a recursive
function that is not Turing-computable via it.

Theorem 2

(a) Let f be a recursive function and ρ : N → Σ∗ an effective representation.
Then ρ(f) ∈ TM.

(b) Let g be a non-recursive function and ρ : N → Σ∗ an effective representation.
Then ρ(g) /∈ TM.

(c) Let η : N → Σ∗ be a non-effective representation. Then there is a recursive
function f , such that η(f) /∈ TM.

Proof Let ξ : N → Σ∗ be some standard bijective representation via which
ξ(REC) = TM (see, for example, [12, p. 131]). The point is that, once ρ(s) ∈ TM,
there are Turing-computable functions for switching between the ρ and the ξ
representations. That is, ρ ◦ ξ−1, ξ ◦ ρ−1 ∈ TM. It can be done by a Turing
machine that enumerates in parallel over both representations until reaching the
required string.
(a) Since f ∈ REC, it follows that there is a function f ′ ∈ TM, such that
f = ξ−1(f ′) = ξ−1 ◦f ′ ◦ ξ. Thus, ρ(f) = ρ◦f ◦ρ−1 = ρ◦ ξ−1 ◦f ′ ◦ ξ ◦ρ−1. Hence,
ρ(f) ∈ TM by the closure of TM under functional composition.
(b) Assume by contradiction that g /∈ REC but ρ(g) ∈ TM. Let g′ be the
corresponding function under the ξ representation. That is, g′ = ξ ◦ ρ−1ρ(g) ◦
ρ ◦ ξ−1. We have by the closure of TM under functional composition that g′ ∈
TM. Since ξ−1(g′) ∈ REC, it is left to show that ξ−1(g′) = g for getting a
contradiction: ξ−1(g′) = ξ−1◦g′◦ξ = ξ−1◦ξ◦ρ−1ρ(g)◦ρ◦ξ−1◦ξ = ρ−1ρ(g)◦ρ =
ρ−1ρ ◦ g ◦ ρ−1 ◦ ρ = g.
(c) By the definition of recursive representation, the successor is such a function.

�

To see the importance of the completeness property for the definition of an
effective representation, one can check that an analogous definition cannot be
provided with two-counter machines as the yardstick.

Our definition of an effective representation resembles Shapiro’s notion of an
“acceptable notation”. He proposes three necessary “semi-formal” criteria for an
acceptable notation [24, p. 19]:

(la) If the computist is given a finite collection of distinct objects, then
he can (in principle) write and identify tokens for the numeral which
denotes the cardinality of the collection.

(lb) The computist can count in the notation. He is able (in principle)
to write, in order, tokens for the numerals denoting any finite initial
segment of the natural numbers.

(2a) If the computist is given a token for a numeral p and a collection
of distinct objects, then he can (in principle) determine whether the
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denotation of p is smaller than the cardinality of the collection and,
if it is, produce a subcollection whose cardinality is the denotation
of p.

Our notion coincides with Shapiro’s second criterion (1b). It also goes along
with Weihrauch’s justifications for the effectiveness of the standard “number-
ings” (representation by natural numbers). He defines a standard numbering
of a word set (the words over {a, b}, for example, are enumerated in the fol-
lowing order: ε, a, b, aa, ab, ba, bb, aaa, aab, . . .), and then proves three claims for
justifying the effectiveness of the numbering [33, p. 80–81]:

A numbering ν : N → W (Σ) is neither a word function nor a num-
ber function, hence neither of our two definitions of computability is
applicable to ν. Nevertheless standard numberings ν : N → W (Σ) are
intuitively effective. The following lemma expresses several effectivity
properties of standard numberings of word sets.

LEMMA (effectivity of standard numberings of word sets)
Let Σ, Γ and Δ be alphabets with Δ = Σ∪Γ . Let νΣ (νΓ ) be a standard
numbering of W (Σ) (W (Γ )).
(l) Define S, V : N → N by S(x) := x + 1, V (x) := x · 1.

Define SΣ , VΣ : W (Σ) → W (Σ) by
SΣ := νΣSν−1

Σ , VΣ := νΣV ν−1
Σ .

Then SΣ and VΣ are computable.
(2) Let b ∈ Σ. Define hb : W (Σ) → W (Σ), Sb : W (Σ) → {1, 2}

and pop : W (Σ) → W (Σ) by
hb(w) = wb, Sb(w) := (1 if w = xb for some x ∈ W (Σ), 2 otherwise),
and pop(ε) := ε, pop(wc) := w.
Define hb

Σ : N → N, Sb
Σ : N → {1, 2} and popΣ : N → N by

hb
Σ := ν−1

Σ hbνΣ, popΣ := ν−1
Σ pop νΣ, Sb

Σ := SbνΣ .
Then hb

Σ , popΣ , and Sb
Σ are computable.

(3) The following functions p : W (Δ) → W (Δ) and q : N → N are
computable:

p(w) := (νΣν−1
Γ (w) if w ∈ W (Γ ), ε otherwise),

q(j) := (ν−1
Γ νΣ(j) if νΣ(j) ∈ W (Γ ), 0 otherwise).

Our notion resembles Weihrauch’s first and second claims (the second claim
concerns the construction of strings, and plays the rôle of the successor when
reversing the “numbering” for representing numbers by strings).

3 An Axiomatization of Effective Models

Section 2 formalized the Church-Turing Thesis over arbitrary domains. We now
provide additional evidence for the thesis by validating it against a class of
“effective computational models”, axiomatized on top of Gurevich’s postulates
for a sequential algorithm [11].
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Gurevich’s postulates are applicable for computations over any mathematical
structure (of first order) and aim to capture any sequential algorithm. This makes
them a natural candidate for axiomatizing effectiveness over arbitrary domains.
Yet, there are several problems:

1. The postulates concern algorithms and not computations with input and
output.

2. Initial states are not limited; thus, they might not be effective.
3. The postulates consider a single algorithm and not an entire computational

model.

We address the first issue, in Sect. 3.2, by adding special input and output
constants, and allowing a single initial state, up to differences in input. The
second issue is addressed by adding Axiom 4, which limits the initial data. The
third issue is addressed, in Sect. 3.3, by requiring all functions of the same model
to share the same domain representation.

A proof is provided in the Appendix, showing that this axiomatization yields
the same definition of effectiveness as the Church-Turing Thesis does. It is based
on Gurevich’s Abstract State Machine Theorem [11], showing that sequential
abstract state machines (ASMs) capture sequential algorithm. As a result, we get
three equivalent definitions of an effective computational model over an arbitrary
domain. See Fig. 1.

We start in Sect. 3.2, with an axiomatization of “sequential procedures”,
along the lines of Gurevich’s sequential algorithms [11]. Next, we axiomatize,
in Sect. 3.3, “effective procedures” as a subclass, satifying an “effectivity ax-
iom”. We then show, in Sect. 3.4, the equivalence of Turing machines to the
class of effective models. We conclude this part with a brief discussion.

3.1 Structures

The states of a procedure should be a full instantaneous description of all its rel-
evant features. We represent them by (first order) structures, using the standard
notion of structure from mathematical logic. For convenience, these structures
will be algebras ; that is, having purely functional vocabulary (without relations).

Definition 9 (Structures)

– A domain D is a (nonempty) set of elements.
– A vocabulary F is a collection of function names, each with a fixed finite

arity.
– A term of vocabulary F is either a nullary function name (constant) in F

or takes the form f(t1, . . . , tk), where f is a function name in F of positive
arity k and t1, . . . , tk are terms.

– A structure S of vocabulary F is a domain D together with interpretations
[[f ]]S over D of the function names f ∈ F .

– A location of vocabulary F over a domain D is a pair, denoted f(a), where
f is a k-ary function name in F and a is a k-tuple of elements of D. (If f
is a constant, then a is the empty tuple.)
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– The value of a location f(a) in a structure S, denoted [[f(a)]]S, is the domain
element [[f ]]S(a).

– It is often useful to indicate a location by a (ground) term f(t1, . . . , tk),
standing for f([[t1]]S , . . . , [[tk]]S).

– Structures S and S′ with vocabulary F sharing the same domain coincide
over a set T of F-terms if [[t]]S = [[t]]S′ for all terms t ∈ T .

It is convenient to think of a structure S as a memory, or data-storage, of a kind.
For example, for storing an (infinite) two dimensional table of integers, we need
a structure S over the domain of integers, having a single binary function name
f in its vocabulary. Each entry of the table is a location. The location has two
indices, i and j, for its row and column in the table, marked f(i, j). The content
of an entry (location) in the table is its value [[f(i, j)]]S .

Definition 10 (Update). An update of location l over domain D is a pair,
denoted l := v, where v is an element of D.

Definition 11 (Structure Mapping). Let S be structure of vocabulary F over
domain D and ρ : D → D′ an injection from D to domain D′. A mapping of
S by ρ, denoted ρ(S), is a structure S′ of vocabulary F over D′, such that
ρ([[f(a)]]S) = [[f(ρ(a))]]S′ for every location f(a) in S.

Structures S and S′ of the same vocabulary over domains D and D′, respectively,
are isomorphic, denoted S � S′, if there is a bijection π : D ↔ D′, such that
S′ = π(S).

3.2 Sequential Procedures

Our axiomatization of a “sequential procedure” is very similar to that of Gure-
vich’s sequential algorithm [11], with the following two main differences, allowing
for the computation of a specific function, rather than expressing an abstract
algorithm:

– The vocabulary includes special constants “In” and “Out”.
– Initial states are identical, except for changes in In.

Axiom 1 (Sequential Time). The procedure can be viewed as a collection S
of states, a sub-collection S0 ⊆ S of initial states, and a transition function
τ : S → S from state to state.

Axiom 2 (Abstract State)

– States. All states are first-order structures of the same finite vocabulary F .
– Input. There are nullary function names In and Out in F . All initial states

(S0 ⊆ S) share a domain D, and are equal up to changes in the value of In.
(For convenience, the initial states can be referred to, collectively, as S0.)

– Isomorphism Closure. The procedure states are closed under isomorphism.
That is, if there is a state S ∈ S, and an isomorphism π via which S is
isomorphic to a F-structure S′, then S′ is also a state in S.
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– Isomorphism Preservation. The transition function preserves isomorphism.
That is, if states S and S′ are isomorphic via π, then τ(S) and τ(S′) are
also isomorphic via π.

– Domain Preservation. The transition function preserves the domain. That
is, the domain of S and τ(S) is the same for every state S ∈ S.

Axiom 3 (Bounded Exploration). There exists a finite set T of “critical”
terms, such that Δ(S, τ(S)) = Δ(S′, τ(S′)) if S and S′ coincide over T , for all
states S, S′ ∈ S, where Δ(S, S′) = {l := v′ | [[l]]S �= [[l]]S′ = v′} is a set of
updates turning S into S′.

The isomorphism constraints reflects the fact that we are working at a fixed level
of abstraction. See [11, p. 89]:

A structure should be seen as a mere representation of its isomorphism
type; only the isomorphism type matters. Hence the first of the two state-
ments: distinct isomorphic structures are just different representations
of the same isomorphic type, and if one of them is a state of the given
algorithm A, then the other should be a state of A as well.

Domain preservation simply ensures that a specific “run” of the procedure is
over a specific domain. (Should it be necessary, one could always combine many
domains into one.) The bounded-exploration axiom ensures that the behavior of
the procedure is effective. This reflects the informal assumption that the program
of an algorithm can be given by a finite text [11, p. 90].

Definition 12 (Runs)

1. A run of procedure with transition function τ is a finite or infinite sequence
S0 �τ S1 �τ S2 �τ · · · , where S0 is an initial state and every Si+1 = τ(Si).

2. A run S0 �τ S1 �τ S2 �τ · · · terminates if it is finite or if Si = Si+1 from
some point on.

3. The terminating state of a terminating run S0 �τ S1 �τ S2 �τ · · · is its
last state if it is finite, or its stable state if it is infinite.

4. If there is a terminating run beginning with state S and terminating in state
S′, we write S �!

τ S′.

Definition 13 (Procedure Extensionality). Let P be sequential procedure
over domain D. The extensionality of P , denoted [[P ]], is the partial function
f : D → D, such that f(x) = [[Out]]S′ whenever there’s a run S �!

τ S′ with
[[In]]S = x, and is undefined otherwise.

Equality, Booleans and Undefined. In contradistinction with Gurevich’s ASM’s,
we do not have built in equality, Booleans, or undefined in the definition of
procedures. That is, a procedure need not have Boolean values (True, False) or
connectives (¬, ∧, ∨) pre-defined in its vocabulary; rather, they may be defined
like any other function. It also should not have a special term for undefined
values, though the value of the function implemented by the procedure is not
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defined when its run doesn’t terminate. The equality notion is also not presumed
in the procedure’s initial state, as it compises infinite data. Nevertheless, since
every domain element has a unique construction, it follows that an effective
procedure may implement the equality notion with only finite initial data. A
detailed description of this implementation is given in Sect. A.3.

3.3 Effective Models

A sequential procedure may be equipped with any oracle, given as an operation
of the initial state. Hence, the extensionality of such a procedure might not
be effective. As a result, we are interested only in sequential procedures that
use effective oracles. Since we are defining effectiveness, we get an inductive
definition, allowing initial states to include functions that are the extensionality
of effective procedures. The starting point must be operations that are very
simple and inherently effective. These basic operations must then be finite. We
begin, then, with sequential procedures, in which the initial state has finite data
in addition to the domain representation (“base structure”). This constraint is
formalized in Axiom 4, below.

Different procedures of the same computational model have some common
mechanism. The level of shared configuration between the model’s procedures
may vary, but they must obviously share the same domain representation. Hence,
we define an “effective model” to be some set of “effective procedures” that share
the same “base structure”.

We formalize the finiteness of the initial data by allowing the initial state to
contain an “almost-constant structure”.

Definition 14 (Almost-Constant Structure). A structure F is almost con-
stant if all but a finite number of locations have the same value.

Since we are heading for a characterization of effectiveness, the domain over
which the procedure actually operates should have countably many elements,
which have to be nameable. Hence, without loss of generality, one may assume
that naming is via terms.

Definition 15 (Base Structure). A structure S of finite vocabulary F over a
domain D is a base structure if every domain element is the value of a unique
F-term. That is, for every element e ∈ D there exists a unique F-term t such
that [[t]]S = e.

A base structure is isomorphic to the standard free term algebra (Herbrand
universe) of its vocabulary.

Proposition 2. Let S be a base structure over vocabulary G and domain D,
then:

– The vocabulary G has at least one nullary function.
– The domain D is countable.
– Every domain element is the value of a unique location of S.
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Example 1. A structure over the natural numbers with constant zero and unary
function successor, interpreted as the regular successor, is a base structure.

Example 2. A structure over binary trees with constant nil and binary function
cons, interpreted as in Lisp, is a base structure.

We are now in position to formalize the fourth axiom, requiring the effectiveness
of the initial state. It is an inductive definition, allowing any function that can
be implemented by a (simpler) effective procedure.

Definition 16 (Structure Union). Let S′ and S′′ be two structures with do-
main D and with vocabularies F ′ and F ′′, respectively. A structure S over D is
the union of S′ and S′′, denoted S = S′ � S′′, if its vocabulary is the disjoint
union F = F ′ � F ′′, and if [[l]]S = [[l]]S′ for locations l in S′ and [[l]]S = [[l]]S′′ for
locations in S′′.

Axiom 4 (Initial Data). The initial state consists of:

– a fixed base structure BS (the domain representation);
– a fixed almost-constant AS structure (finite initial data); and
– a fixed effective structure ES over the base structure BS (effective oracles);

in addition to an input value In over BS that varies from initial state to initial
state. That is, the initial state S0 is the union BS � AS � ES � {In}, for some
base structure BS, almost-constant structure AS, and effective structure ES.

The effective structure contains finite many functions that are the extensionality
of effective procedures over the same domain representation. This allows the
procedure to use an algorithm at any abstraction level, as long as we can assure
that the underlying oracles are effective.

As already mentioned, there are two aspects to the requirement that the
domain representation be isomorphic to a Herbrand universe: every domain el-
ement has a name, and names are unique. Were one to allow unnamed domain
elements, then a computation cannot be referred to, nor repeated, hence would
not be effective. As for the uniqueness of the names, allowing a built-in equality
notion with an “infinite memory” of equal pairs is obviously not effective. Hence,
the equality notion should be the product of some internal effective mechanism,
and thus needs to be a part of the computational model.

An effective procedure must satisfy Axioms 1–4.

Definition 17 (Effective Model). An effective model is a set of effective
procedures (objects satisfying Axioms 1–4) that share the same base structure.

To sum up:

Thesis B. All “effective” computational models are effective models (per
Definition 17).
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3.4 Effective Equals Computable

In the sense of our above definition of effectiveness (Definition 17) we have that:

Theorem 3. Turing machines are an effective model.

Furthermore,

Theorem 4. Turing machines are representationally at least as powerful as any
effective model.

That is, TM 	 E for every model E satisfying the effectiveness axioms.
Note that we use representational comparison 	, which provides a stronger re-

sult. Accordingly, Turing machines are also computationally at least as powerful
(�) as any effective model.

The proofs of Theorems 3 and 4 are quite straightforward but somewhat
lengthy, so are relegated to the appendix. They make usage of Abstract State
Machines, which operate over arbitrary domains, and are based on Gurevich’s
Abstract State Machine Theorem [11], showing that sequential abstract state
machines (ASMs) capture sequential algorithms, defined axiomatically.

Definition 18 (Effective State Model). An ASM model satisfying the initial
data restrictions is called an Effective State Model (or ESM).

This suggests the following variant thesis:

Thesis C. Every “effective” computational model is behaviorally equiv-
alent to an ESM.

If we adopt the variation of the comparison notion that requires the “stronger”
model to be able to compute the image of the representation (Definition 5), we
get a closer relationship between the three definitions of effectiveness (Theses
A–C): When considering only the extensionality of computational models (that
is, the set of functions that they compute) we have that the three effectiveness
criteria (Theses A–C) are equivalent.

Definition 19 (Effective Looks). A model A looks effective if the set of func-
tions that it computes may be represented by Turing-computable functions. That
is, if A � TM.

Claim 1. A model A looks effective if and only if there exists an effective model
B, such that [[A]] = [[B]].

Thanks to Gurevich’s Abstract State Machines Theorem [11], we have the anal-
ogous claim with respect to ASMs:

Claim 2. A model A looks effective if and only if there is an ESM B, such that
[[A]] = [[B]].

Claims 1 and 2 are not proved herein. (Their proofs are based on the proofs of
Theorems 3 and 4, as well as aspects of the proof of Theorem 2.)

The resulting relationship between the different characterizations of effective-
ness is depicted in Fig. 1.
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3.5 Discussion

Necessity. An effective procedure should satisfy, by our definitions, Axioms 1–
4. In the introduction, we argued for the necessity of the postulates from the
intuitive point of view of effectiveness. Moreover, omitting any of them allows
for models that compute more than Turing machines:

1. The Sequential Time Axiom is necessary if we wish to analyze computation,
which is a step-by-step process. Allowing for transfinite computations, for
example, would allow a model to precompute all members of a recursively-
enumerable set.

2. In the context of effective computation, there is no room for infinitary func-
tions, for example. Without closure under isomorphism there would be no
value to the Bounded-Exploration Axiom, allowing the assigning of any de-
sired value to the Out location.

3. By omitting the Bounded-Exploration Axiom, a procedure need not have
any systematical behavior, hence may “compute” any function by simply
assigning the desired value at the Out location. That is, for each initial state
S there is a state S′, such that τ(S) = S′ and [[Out]]S′ is the “desired” value.

4. Omitting the Initial-Data Axiom, one may “compute” any function (e.g.
a halting oracle), by simply having all its values in the initial state. Such
functions could also be encoded in equalities between locations, were the
initial data not (isomorphic to) a free term algebra.

Algorithm versus Model. In [11], Gurevich proved that any algorithm satisfying
his postulates can be represented by an Abstract State Machine. But an ASM
is designed to be “abstract”, so is defined on top of an arbitrary structure that
may contain non-effective functions. Hence, it itself may compute non-effective
functions. We have adopted Gurevich’s postulates, but added an additional pos-
tulate (Axiom 4) for effectiveness: an algorithm’s initial state may contain only
finite data and known effective operations in addition to the domain represen-
tation. Different runs of the same procedure share the same initial data, except
for the input; different procedures of the same model share a base structure. We
proved that – under these assumptions – the class of all effective procedures is
of equivalent computational power to Turing machines.
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A Proofs of Two Theorems

We provide here proofs of Theorems 3 and 4. First, we require some additional
definitions and lemmata.

A.1 Programmable Machines

In Sect. 3.2, we axiomatized sequential procedures. To link these procedures with
Turing machines, we define some mediators, named “programmable procedures,”
along the lines of Gurevich’s Abstract State Machines (ASMs) [11]. We then
show that sequential procedures and programmable procedures are equivalent
(Lemma 1).

A “programmable procedure” is like a sequential procedure, with the main
difference that its transition function should be given by a finite “flat program”
rather than satisfy some constraints.

ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-257.pdf
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Definition 20 (Flat Program). A flat program P of vocabulary F has the
following syntax:
if x11

.= y11 and x12
.= y12 and . . . x1k1

.= y1k1

then l1 := v1

if x21
.= y21 and x22

.= y22 and . . . x2k2

.= y2k2

then l2 := v2

...

if xn1
.= yn1 and xn2

.= yn2 and . . . xnkn

.= ynkn

then ln := vn

where each .= is either ‘=’ or ‘�=’, n, k1, . . . , kn ∈ N, and all the xij , yij, li, and
vi are F-terms.

Each line of the program is called a rule. The part of a rule between the if
and the then is the condition, li is its location, and vi is its value.

The activation of a flat program P on an F-structure S, denoted P (S), is a
set of updates {l := v | there is a rule in P , whose condition holds (under the
standard interpretation), with location l and value v}, or the empty set if the
above set includes two values for the same location.

Coding Style. To make flat programs more readable, let

% comment
if cond-1

stat-1
stat-2

else
stat-3

stand for

if cond-1 then stat-1
if cond-1 then stat-2
if not cond-1 then stat-3

and, similarly, for other such abbreviations.

Definition 21 (Programmable Procedure). A programmable procedure is
composed of: F , In, Out, D, S, S0, and P , where all but the last component is as
in a sequential procedure (see Sect. 3.2), and P is a flat program of F .

The run of a programmable procedure and its extensionality are defined as for
sequential procedures (Definitions 12 and 13), where the transition function τ is
given by τ(S) = S′ ∈ S such that Δ(S, S′) = P (S).

A.2 Sequential Equals Programmable

We show that every programmable procedure is sequential (satisfying the three
axioms), and every sequential procedure is programmable. This result is derived
directly from the main lemma of [11].



The Church-Turing Thesis over Arbitrary Domains 225

Lemma 1. Every programmable procedure is sequential. That is, let A be a pro-
grammable procedure with states S and a flat program P , then there exists a
sequential procedure B with the same elements of A, except for having a transi-
tion function τ instead of the program P , such that Δ(S, τ(S)) = P (S) for every
S ∈ S.

Proof. Let A = 〈F , In, Out, D, S, S0, P 〉 be an arbitrary programmable proce-
dure. Define the finite set of critical F -terms T to include all terms and sub-
terms of P . Define a transition function τ : S → S by τ(S) = S′ such that
Δ(S, S′) = P (S). To show that B = 〈F , In, Out, D, S, S0, τ〉 is a sequential pro-
cedure such that Δ(S, τ(S)) = P (S) for every S ∈ S it remains to show that
B satisfies the constraints defined for τ in a sequential procedure. Since the flat
program P includes only terms in T (and doesn’t refer directly to domain ele-
ments), it obviously follows that τ satisfies the isomorphism constraint. Since T
includes all the terms of P , as well as the subterms of the location-terms of P , it
obviously follows that states that coincide over T have the same set of updates
by τ . Thus, τ satisfies the bounded-exploration constraint. �

Lemma 2. Every sequential procedure is programmable. That is, let B be a
sequential procedure with states S and a transition function τ , then there exists
a programmable procedure A with the same elements of B, except for having a
flat program P instead of τ , such that Δ(S, τ(S)) = P (S) for every S ∈ S.

This follows directly from Gurevich’s proof that for every sequential algorithm
there exists an equivalent sequential abstract state machine [11, Lemma 6.11].

A.3 Effective Equals Computable

We prove now that Turing machines are of equivalent computational power to
all effective models.

Turing Machines are Effective. First, we show that the class of effective
procedures is at least as powerful as Turing machines, as the latter is an effective
model.

Proof (of Theorem 3). We consider Turing machines with two-way infinite tapes.
By way of example, let the tape alphabet be {0, 1}. So domain elements are
comprised of an internal machine state and an infinite tape, containing finitely
many 0’s and 1’s, and the rest blank, and a read/write head somewhere along
the tape.

A Turing machine state (instantaneous description) contains three things:
Left, a finite string containing the tape section left of the reading head; Right,
a finite string with the tape section to the right to the read head; and q, the
internal state of the machine. The read head points to the first character of
Right.

Turing machines can be viewed as an effective model with the following com-
ponents:



226 U. Boker and N. Dershowitz

Domain: The domain consists of all finite strings over 0, 1. That is the domain
D = {0, 1}∗.

Base structure: Constructors for the finite strings: the constant symbol @ and
unary function symbols Cons 0 and Cons 1. Thus, @ has the empty string, ε,
as its permanent value.

Almost-constant structure:

– Input and Output (nullary functions): In, Out. The value of In at the initial
state is the content of the tape, as a string over {0, 1}∗.

– Constants for the alphabet characters and TM-states (nullary): 0, 1, q 0,
q 1, . . . , q k. Their actual values are of no significance, as long as they are
all different.

– Variables to keep the current status of the Turing machine (nullary): Left,
Right, and q. Their initial values are: Left = ε, Right = ε, and q = q 0.

Effective structure:

– Functions to examine the tape (unary functions): Head and Tail. Their initial
values are as in the standard implementation of Head and Tail. Their effective
implementation is given below, after the description of the Turing machine
model.

– The Boolean equality notion =. Note that the standard equality notion con-
tains infinite data, thus cannot be contained in the almost-constant struc-
ture, nor in the base structure. Nevertheless, since every domain element has
a unique construction, the equality notion can be effectively implemented
with only finite initial data. This implementation is explained after the im-
plementation of Head and Tail.

Transition function: By Lemma 1, every programmable procedure is a sequential
procedure. Thus, a programmable procedure that satisfies the initial-data pos-
tulate is an effective procedure. Every Turing machine is an effective procedure
with a flat program looking like this:

if q = q_0 % TM’s state q_0
if Head(Right) = 0

% write 1, move right, switch to q_3
Left := Cons_1(Left)
Right := Tail(Right)
q := q_3

if Head(Right) = 1
% write 0, move left, switch to q_1
Left := Tail(Left)
Right := Cons_0(Right)
q := q_1

if Right = @
% write 0, move left, switch to q_2
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Left := Tail(Left)
Right := Cons_0(Right)
q := q_2

if q = q_1 % TM’s state q_1
...

if q = q_k % the halting state
Out := Right

In the above description of Turing machines as an effective model we’ve used
the functions Head and Tail. We show now their effectiveness.

The implementation sequentially enumerates all strings, assigning their Head
and Tail values, until encountering the input string. Note that it uses the equality
notion, which is shown to be effective afterwards.

It uses the same base structure and almost-constant structure described above,
with the addition of the following nullary functions (Name = initial value):
New = ε, Backward = 0, Forward = 1, AddDigit = 0, and Direction = ε.

% Sequentially constructing the Left variable
% until it equals to the input In, for filling
% the values of Head and Tail.
% The enumeration is: empty string, 0, 1, 00, 01, ...
if Left = In % Finished

Right := Left
Left := @

else % Keep enumerating
if Direction = New % default val

if Left = @ % @ -> 0
Left := Cons_0(Left)
Head(Cons_0(Left)) := 0
Tail(Cons_0(Left)) := Left

if Head(Left) = 0 % e.g. 110 -> 111
Left := Cons_1(Tail(Left))
Head(Cons_1(Tail(Left)) := 1
Tail(Cons_1(Tail(Left)) := Tail(Left)

if Head(Left) = 1 % 01->10; 11->000
Direction := Backward
Left := Tail(Left)
Right := Cons_0(Right)

if Direction = Backward
if Left = @ % add rightmost digit

Direction := Forward
AddDigit := True

if Head(Left) = 0 % change to 1
Left := Cons_1(Tail(Left))
Direction := Forward

if Head(Left) = 1 % keep backwards
Left := Tail(Left)
Right := Cons_0(Right)

if Direction = Forward % Gather right 0s
if Right = @ % finished gathering
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Direction := New
if AddDigit = 1

Left := Cons_0(Left)
Head(Cons_0(Left)) := 0
Tail(Cons_0(Left)) := Left
AddDigit = 0

else
Left := Cons_0(Left)
Right := Tail(Right)
Head(Cons_0(Left)) := 0
Tail(Cons_0(Left)) := Left

The equality notion. The standard equality notion has infinite data, thus cannot
be given in the initial state. However, since the domain elements are uniquely
constructed, it follows that it can be effectively implemented using only finite
initial data. The implementation scheme is quite similar to the above imple-
mentation of Head and Tail. Initially, the value of the equality function is ⊥ at
all locations. The implementation sequentially enumerates the strings, assigning
True as the value of equality of each string with itself and False for comparisons
with all preceeding strings. This continues until the process gives one of the de-
fined values to the equality operation applied to the inputs. �

Effective Procedures are Computable. Next, we show that all effective
models are equal to or weaker than Turing machines by mapping every effective
model to a while-like computer program (CP). The computer program may
be of any programming language known to be of equivalent power to Turing
machines, as long as it operates over the natural numbers and includes the
syntax and semantics of flat programs.

Lemma 3. Every infinite base structure S of vocabulary F over a domain D is
isomorphic to a computable structure S′ of the same vocabulary over N. That
is, there is a bijection π : D ↔ N such that for every location f(a) of S we have
that [[f(a)]]S = π−1([[f(π(a))]]S′ ).

Proof. Let S be a base structure of vocabulary F over a domain D. Let T be the
domain of all F -terms, and S̃ the standard free term algebra (structure) of F .
Since all structure functions are total, it follows that every F -term has a value in
D, and by Proposition 2, every element e ∈ D is the value of a unique F -term.
Therefore, there is bijection ϕ : D ↔ T , such that ϕ−1(t) = [[t]]S for every t ∈ T .
Hence, S and S̃ are isomorphic via ϕ. Since F is finite, it follows that its set
of terms T is recursive. Define a computable enumeration η : T ↔ N. Define
a structure S′ of vocabulary F over N by the following computable recursion:
[[f(n1, . . . , nk)]]S′ = η(f(η−1(n1), . . . , η−1(nk))). That is, for computing the value
of a function f on a tuple n the program should recursively find the terms of n,
and then compute the enumeration of the combined term. By the construction of
S′ we have that S′ and S̃ are isomorphic via η. Hence, S′ and S are isomorphic
via ϕ ◦ η. �
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Lemma 4. Computer programs (CP) are at least as powerful, representation-
ally, as any effective model.

Proof. We show that for every effective model E over domain D there is a
bijection π : D → N such that CP 	π E.

When the effective model E has a finite base structure, then the computability
is obvious due to the finite number of possible procedures. We consider then the
infinite case; let E be an effective model over a domain D with an infinite base
structure BS . By Lemma 3 there is a bijection π : D ↔ N, such that the structure
BS ′ := π(BS ) is computable. Let PBS be a computer program implementing BS ′.
For each effective procedure e ∈ E, let ASe be its almost-constant structure. Since
ASe is almost constant, it follows that AS′

e := π(ASe) is computable; let PASe

be a computer program implementing AS′
e. Analogously, we have by induction a

computer program PESe implementing the effective structure of e. By Lemma 2,
the transition function of every effective procedure e ∈ E can be defined by a flat
program Pe. For every effective procedure e ∈ E, define a computer program P ′

e =
PBS ∪Pe ∪PASe ∪PESe . Since BS′ = π(BS), AS′

e = π(ASe) and ES′
e = π(ESe),

it follows that [[P ′
e]] = π([[e]]). Therefore, there is a bijection π : D ↔ N, such that

for every effective procedure e ∈ E there is a computer program P ′
e ∈ CP such

that [[P ′
e]] = π([[e]]). Hence, CP 	 E. �

We are now in position to prove that Turing machines are at least as powerful
as any effective model.

Proof (of Theorem 4). By Lemma 4, computer programs (CP) are representa-
tionally at least as powerful as any effective model, while Turing machines (TM)
are of equivalent power to computer programs. (There are standard bijections
between Σ∗ and N.) �
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