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Abstract While the complexity of translating future linear temporal
logic (LTL) into automata on infinite words is well-understood, the size
increase involved in turning automata back to LTL is not. In particular,
there is no known elementary bound on the complexity of translating
deterministic w-regular automata to LTL.

Our first contribution consists of tight bounds for LTL over a unary al-
phabet: alternating, nondeterministic and deterministic automata can be
exactly exponentially, quadratically and linearly more succinct, respect-
ively, than any equivalent LTL formula. Our main contribution consists
of a translation of general counter-free deterministic w-regular automata
into LTL formulas of double exponential temporal-nesting depth and
triple exponential length, using an intermediate Krohn-Rhodes cascade
decomposition of the automaton. To our knowledge, this is the first ele-
mentary bound on this translation. Furthermore, our translation pre-
serves the acceptance condition of the automaton in the sense that it
turns a looping, weak, Biichi, coBiichi or Muller automaton into a for-
mula that belongs to the matching class of the syntactic future hierarchy.
In particular, it can be used to translate an LTL formula recognising a
safety language to a formula belonging to the safety fragment of LTL
(over both finite and infinite words).
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1 Introduction

Linear Temporal Logic with only future temporal operators (from here on LTL)
and w-regular automata, whether deterministic, nondeterministic or alternating,
are both well-established formalisms to describe properties of infinite-word lan-
guages. LTL is popular in formal verification and synthesis due to its simple
syntax and semantics. Yet, while properties might be convenient to define in
LTL, most verification and synthesis algorithms eventually compile LTL formu-
las into w-regular automata. The expressiveness of both these key formalisms, as

* This is the full version of a chapter with the same title that appears in the FoSSaCS
2022 conference proceedings.

** Salomon Sickert is supported by the Deutsche Forschungsgemeinschaft (DFG) under
project number 436811179.


http://orcid.org/0000-0003-4322-8892
http://orcid.org/0000-0003-1171-8790
http://orcid.org/0000-0002-0280-8981

2 U. Boker, K. Lehtinen, S. Sickert

well as translations from LTL to automata of various types, are well understood.
Here, we consider the converse translations, which, in comparison, have received
less attention: up till now, no elementary upper bound on the size blow-up of
going from automata to LTL was known.

Regarding expressive power, deterministic Muller automata, nondetermin-
istic Biichi automata, and weak alternating automata recognise all w-regular
languages [20,39]. LTL-definable languages (surveyed in [12]) are a strict subset
thereof, also defined by first-order logic, star-free regular expressions, aperiodic
monoids, counter-free automata, and very weak alternating automata. As for
succinctness, nondeterministic and alternating automata can be exponentially
and double-exponentially more succinct than deterministic automata, respect-
ively. Determinisation in particular has precise bounds [31,34,23,35,11,3].

The succinctness of various representations of LTL-definable languages is less
clear: effective translations between the different models are far from straight-
forward, and their complexity is sometimes uncertain. In particular, to the best
of our knowledge, up to now there has been no elementary bound even on the
translation of deterministic counter-free automata, arguably the simplest auto-
mata model for this class of languages, into LTL formulas. (Considering LTL
with both future and past temporal operators, there is a double-exponential up-
per bound on the length of the formula [25]*.) The complexity of obtaining a
deterministic counter-free automaton from a nondeterministic one is also, to the
best of our knowledge, open.

We study the complexity of translating automata to LTL (equivalently, to
very weak alternating automata), considering formula length, size, and nesting
depth of temporal operators.

We begin (Section 3), as a warm-up, with the unary alphabet case on fi-
nite words. We show that the size-blow up involved in translating deterministic,
non-deterministic and alternating automata to LTL, when possible, is linear,
quadratic and exponential, respectively, and these bounds are tight. In contrast,
going from LTL to alternating, nondeterministic and deterministic automata is
linear, exponential and double-exponential, respectively [32,40,18].

The case of non-unary alphabets is much more difficult. We provide a transla-
tion of counter-free deterministic w-regular automata (with any acceptance con-
dition) into LTL formulas with double exponential depth and triple exponential
length. Our translation uses an intermediate Krohn-Rhodes reset cascade decom-
position (wreath product) of deterministic automata, which is a deterministic
automaton built from simple components.

Our main technical contribution consists of a translation of a reset cascade
into an LTL formula of depth linear and length singly exponential in the number
of cascade configurations. Combining this with Eilenberg’s Holonomy translation
of a semigroup into a cascade [13, Corollary I1.7.2] and Pnueli and Maler’s adapt-
ation of it to automata [25, Theorem 3] (see Remark 1), we obtain a translation
of counter-free deterministic w-regular automata into LTL formulas of double
exponential depth and triple exponential length. Our construction preserves the

4 See Remark 1 on whether the upper bound in [25] is single or double exponential.
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acceptance condition of the automaton in the sense that it turns a Biichi-looping,
coBiichi-looping, weak, Biichi or coBiichi automaton into a formula that belongs
to the matching class of the syntactic future hierarchy (see Definition 1 and [7]).

Related work

Finite words. While LTL is usually interpreted over infinite words, it also admits
finite-word semantics that coincide with the finite word version of the other
equivalent formalisms. The equivalence between FO and star-free languages on
finite words is due to McNaughton and Papert [30]. Cohen, Perrin and Pin [9]
used the Krohn-Rhodes decomposition to characterise the expressive power of
LTL with only X and F (eventually), but do not provide bounds on the size
trade-off between the different models. Wilke [41] gives a double-exponential
translation from counter-free DFA to LTL. More recently, Bojanczyk provided
an algebraically flavoured adaptation of Wilke’s proof [2, Section 2.2.2].

Infinite words. With substantial effort over several decades, the above techniques
have been extended to infinite words using intricate tools with opaque complex-
ities. Ladner [21] and Thomas [37,38] for example extended the equivalence of
star-free regular expressions and FO to infinite words, while the w-extension of
the equivalence with aperiodic languages is due to Perrin [33]. The correspond-
ence with LTL is due to Kamp [17] and Gabbay, Pnueli, Shelah and Stavi [15].
Diekert and Gastin’s survey [12] provides an algebraic translation into LTL via w-
monoids while Cohen-Chesnot gives a direct algebraic proof of the equivalence of
star-free w-regular expressions and LTL [10]. Wilke takes an automata-theoretic
approach, using backward deterministic automata [42,43]. However, none of the
above address the complexity of the transformations. Zuck’s dissertation [45]
gives a translation of star-free regular expressions into LTL, with at least non-
elementary complexity. Subsequently, Chang, Mana and Pneuli [7] use Zuck’s
results to show that the levels of their hierarchy of future temporal properties
coincide with syntactic fragments of LTL. Sickert and Esparza [36] gave an ex-
ponential translation of any LTL formula into level Ay of this hierarchy.

2 Preliminaries

Languages. An alphabet Y, of size | Y|, is a finite set of letters. * X+ and Xv
denote the sets of finite, nonempty finite, and infinite words over X, respectively.
A language of finite or infinite words is a subset of X* or X“, respectively.
We write [i..j] and [i..j), with integers ¢ < j, for the sets {i,s + 1,...,j} and
{i,i+1,...,5 — 1}, respectively. For a word w = 0 - 01 - - -, we write |w| for its
length (oo if w is infinite), w[i] for o;, wy;. ;) and wy;. ;y for its corresponding infixes
(wyi..qy is the empty word), and wy;. ) for its (finite or infinite) suffix o; - o1 - - -.
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Linear Temporal Logic (LTL). Let AP be a finite set of atomic propositions. LTL
formulas are constructed from the constant true, atomic propositions a € AP,
the connectives = (negation) and A (and), and the temporal operators U (until)
and X (next). Their semantics are given by a satisfiability relation = between
finite or infinite words w € (247)* U (247)«, and a formula ¢ inductively as
follows:

w [ true wEa iff a € wl0]

wiE—p  ff wiEe wEeAY iff wiEpadwl=Y
wEXe  iff |w>1andwy ) e

w = Uy iff Fi€[0.|w]). wy.) =1 and Vj € [0.4). wyj ) = ¢

We also use the common shortcuts false := —true, ¢ V¢ = =((—p) A (—1)),
Fop = trueUp, Gy = -F-y, and 1Ry = —(—)1)U(—)s). The language
of finite words of ¢ is L<%(¢) = {w € (247)T | w = ¢}, and the language of
infinite words is L(p) = {w € (247)¥ | w |= ¢}. Note that we omit the “< w”
superscript if it is clear from the context which set is used. The length |p| of ¢
is the number of nodes in its syntax tree, the size of ¢ is the number of nodes in
a DAG representing this syntax tree, and its temporal nesting depth, denoted by
depth(y), is defined by: depth(true) = 0; depth(a) = 0 for an atomic proposition
a € AP; depth(—) = depth(t)); depth(w; A 1¥9) = max(depth (), depth(2));
depth(X1)) = depth(z)) +1; and depth(¢); Utpy) = max(depth()1), depth(¢pz)) +1.
Chang, Manna, and Pnueli define in [7] a syntactic hierarchy for LTL formulas
(over infinite words):

Definition 1 (LTL Syntactic future hierarchy [7] °).

— Yo = 1l = Ay is the least set containing all atomic propositions and their
negations, and is closed under the application of conjunction and disjunction.

— Y41 1s the least set containing I1; and negated formulas of I1; 11 closed under
the application of conjunction, disjunction, and the X and U operators.

— II; 11 is the least set containing X; and negated formulas of X;+1 closed under
the application of conjunction, disjunction, and the X and R operators.

— A;qq is the least set containing Y11 and Il;41 that is closed under the
application of conjunction, disjunction, and negation.

X1 is referred to as syntactic co-safety formulas, I, as syntactic safety formulas.

Automata. A deterministic semiautomaton is a tuple D = (X, Q,¢), where X
is an alphabet; @ is a finite nonempty set of states; and d: @ x X — @ is a
transition function and we extend it to finite words in the usual way. A path of
D on a word w = 0o - 01 -+ - is a sequence of states qg, q1, . . ., such that for every
i < |w|, we have §(q;,07) = ¢it1.

It is a reset semiautomaton if for every letter o € X, either i) for every state
q € @ we have §(q,0) = q, or ii) there exists a state ¢’ € @, such that for every
state ¢ € Q we have 6(q,0) =¢'.

5 This extends [5,36] with negation, which can be removed via negation normal form.
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It is counter free if for every state ¢ € @, finite word v € X', and number
n € N\ {0}, there is a self loop of ¢ on u™ iff there is a self loop of ¢ on w.

A deterministic automaton is a tuple D = (X, Q, ¢, 0, &), where (X, Q,9) is a
deterministic semiautomaton, ¢ € Q is an initial state; and « is some acceptance
condition, as detailed below. A run of D on a word w is a path of D on w that
starts in ¢. It is a reset or counter-free automaton if its semiautomaton is.

The acceptance condition of an automaton on finite words is a set F C Q; a
run is accepting if it ends in a state ¢ € F. The acceptance condition of an w-
regular automaton, on infinite words, is defined with respect to the set inf(r) of
states visited infinitely often along a run r. We define below several acceptance
conditions that we use in the sequel; for other conditions, see, for example, [3].

The Muller condition is a set @ = {Mj, ..., My} of sets M; C @ of states,
and a run r is accepting if there exists a set M;, such that M; = inf(r). The
Rabin condition is a set a = {(G1, B1),...,(Gk, B)} of pairs of sets of states,
and r is accepting if there exists a pair (Gy, B;), such that G; N inf(r) # 0 and
B; ninf(r) = 0. The Biichi (resp. coBiichi) condition is a set o C Q of states,
and r is accepting if aNinf(r) # @ (resp. aNinf(r) = (). A weak automaton is a
Biichi automaton, in which every strongly connected component (SCC) contains
only states in a or only states out of a. A looping automaton is a Biichi or
coBiichi automaton, where all states are in «a, except for a single sink state.

Deterministic automata of the above types correspond to the hierarchy of
temporal properties [27]: Looping-Biichi, looping-coBiichi, weak, Biichi, coBiichi,
and Rabin/Muller deterministic automata define respectively safety, guarantee
(co-safety), obligation, recurrence, persistence, and reactivity languages. If the
language is also LTL-definable, then there exists an equivalent LTL formula in
I, ¥y, Ay, IIy, X5, and As, respectively [7]. Every deterministic w-regular
automaton is equivalent to deterministic Muller and Rabin automata, where the
Muller (but not always Rabin) one can be defined on the same semiautomaton.

Nondeterministic and alternating automata (to which we only refer in Sec-
tion 3, on finite words over a unary alphabet) extend deterministic automata by
having a transition function 6: Q@ x X' — 29 and 6: Q x X — (positive Boolean
formulas over @), respectively. (See, for example, [6] for formal definitions.)

3 Unary Alphabet

Kupferman, Ta-Shma and Vardi [19] compared the succinctness of different auto-
mata models when counting, that is, recognising the singleton language {a*} for
some k over the singleton alphabet {a}. For the succinctness gap between auto-
mata and LTL, we study the task of recognising arbitrary languages over the
unary alphabet, which can be seen as sets of integers, rather than a single integer.

For a unary alphabet, since there is only one infinite word, only languages
on finite words are interesting. We thus consider LTL formulas over (no) atomic
propositions AP = (), and automata on finite unary words over the corresponding
alphabet ¥ = 247 = {§}, where we use the shorthand a = (). The size of
a deterministic automaton is the number of its states, of a nondeterministic
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automaton the number of its transitions, and of an alternating automaton the
number of subformulas in its transition function.

We show that the size blow-up involved in translating deterministic, non-
deterministic, and alternating automata to LTL, when possible, is linear, quad-
ratic, and exponential, respectively.

In our analysis, we shall use the following folklore theorem, which extends
Wolper’s Theorem [44]. The proof is given in Appendix A.1.

Proposition 1 (Extended Wolper’s theorem, Folklore). Consider an
LTL formula ¢ with depth(p) = n over the atomic propositions AP, and let
X = 24P Then for every words u € X*, v € XT and t € X¥, and numbers
i,j > n, ¢ has the same truth value on the words (uv't) and (uvit).

We use this to establish that unary LTL describes only finite and co-finite
properties, and that there is a tight relation between the depth of LTL formulas
and the length of words above which they are all in or all out of the language.

Proposition 2. Given an LTL formula ¢ with depth(¢) = n on finite words
over the unary alphabet {a}, a* € L(p) for alli >n or a* ¢ L(p) for all i > n.

Proposition 3. Consider a language L C {a}™ that agrees on all words of
length over n, that is, has the same truth value on all such words. Then there is
an LTL formula of size in O(n) with language L.

We now establish the trade-off between LTL and alternating automata (AFA)
over unary alphabets. AFA are closed under (linear) complementation, so we use
a pumping argument to bound the length after which all words have the same
truth value, giving an upper bound on the LTL formula.

Lemma 1. Every alternating automaton with n states that recognises an LTL-
expressible language L C {a}™ is equivalent to an LTL formula of size in O(2").

We show next that this upper bound is tight. Consider the language {aan1 }
which, according to Proposition 2, is only recognised by LTL formulas of size at
least 2"~ 1. Tt is recognised by a weak alternating automaton with 2n states and
size in O(n), using an automaton based on Leiss’s construction [22]. Intuitively,
the alternating automaton represents an n-bit up-counter with two states for
each bit, one for 1 and one for 0 (see Fig. 1), where the universal transitions
enforce that nondeterministic transitions correctly update the counter.

Lemma 2 (Adaptation of [22, proof of Theorem 1]). For every n €
N\ {0}, there is a weak alternating automaton with 2n states and transition

1
1.
We continue to nondeterministic automata (NFAs), for which the arguments
are more involved as they do not allow for linear complementation.

function of size in O(n) recognising the language {a®"~
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Figure1l. A weak alternating automaton of size in O(n) recognising {aQnil}; here
with n = 4, where the initial configuration is ¢1,0 A ¢2,0 A ¢3,0 A ¢4,0-

Lemma 3. FEvery nondeterministic automaton with n states recognising an LTL-
expressible language L C {a}* is equivalent to an LTL formula of size in O(n?).

Proof sketch. For finite L, by a pumping argument, A only accepts words up to
length n, and by Proposition 3 we are done. We now consider a co-finite L.

We use 2-way deterministic automata, which are deterministic automata that
process words of the form Fw-, where - and - are start- and end-of-word markers
respectively, and where transitions specify whether to read the letter to the right
or to the left of the current position. They accept by reaching an end state, and
reject by reaching a rejecting state or by failing to terminate [16], and every
unary NFA A can be turned into a 2-way DFA D of size O(n?) [8].

We construct from an NFA A a 2-way DFA D, and then a 2-way DFA D’ of
the same size that recognises a* \ {a*}, where a* is the longest word not in L.
We use the fact that a 2-way DFA of size m can be complemented into one of
size 4m [16] to complement D’ into D that recognises {a*} and must therefore
be of size at least k + 2 [1], so k, and by Proposition 2, an LTL formula for L,
is in O(n?). O

We now show that this upper bound is tight. The previous lower bound ideas
do not work with nondeterminism, since we need n states to recognise {a™} [19].
Yet, we need not count ezactly to n for achieving a lower bound. We can use
a variant of a language used in [4, pages 10-11]: For every positive integer k,
define the set of positive integers Sy, = {m > 0] 3i,j € N.m =ik + j(k + 1)},
and the language Vj, = {a™ | m € Sk} C {a}*.

Proposition 4 (Folklore, [4, Theorem 3]). For every k € N the number
k%2 — k — 1 is the mazimal number not in Si.
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Proposition 5 ([4, proof of Theorem 4]). For everyn € N, there is an NFA
of size in O(n) recognising a co-finite language L C {a}*, such that ak’—k=1 g
not in L, while for every t > k? — k, we have that a* € L.

Theorem 1. The size blow-up involved in translating deterministic, nondetermin-
istic, and alternating automata on finite unary words to LTL, when possible, is
O(n), ©(n?), and O(2"), respectively.

4 General Alphabet

In this section we consider the more challenging task of turning counter-free w-
regular automata over arbitrary alphabets into LTL. We use the fact that these
automata can be turned into reset cascade automata (Krohn-Rhodes-Holonomy
decomposition), which we describe in Section 4.1. Our technical contribution is
then the translation of reset cascade automata into LTL.

In brief, we build, in Section 4.2, a parameterised LTL formula that is sat-
isfied by a word w iff the run of the cascade on w, starting in the parameter
configuration S, reaches a parameter configuration 7', such that the remain-
ing suffix of w satisfies a parameter LTL formula 7. We then use this formula,
in Section 4.4, to describe the automaton’s acceptance condition.

When encoding the behavior of a cascade by an LTL formula, we need to
overcome two major challenges: First, the cascade is a formalism that looks at
the past, namely at the word read so far, to determine the next configuration,
while an LTL formula obtains its value only from the future. Second, the cascade
has an internal state, while an LTL formula does not. Our reachability formulas
are therefore quite involved, built inductively over the number of levels in the
cascade, and implicitly allowing to track the internal configuration of the cascade.

In Section 4.3 we analyse the length and depth of the resulting formulas.

4.1 Cascaded Automata

Cascades. A cascaded semiautomaton (analogous to the algebraic wreath pro-
duct) over an alphabet X' is a semiautomaton that can be described as a sequence
of simple semiautomata, such that the alphabet of each of them is X' together
with the current state of each of the preceding semiautomata in the sequence. It
is a reset cascade if it is a sequence of reset semiautomata. Formally, a cascaded
semiautomaton, or just cascade, over alphabet Y with n levels is a tuple A =
(X, A1, Aay ..., Ay), such that A; = (X;,Q;,0;) is a semiautomaton for each
level i, where X; = X x Q1 X -+ X Qi—1. (So X1 = X, Yy = ¥ X Qq, etc.). It is
a reset cascade if all A;’s are reset semiautomata.

An i-configuration S of A is a tuple (q1,q2,...,¢) € Q1 X -+ x Q;. Ilf g;41 €
Qi1 is a state of level i + 1, we write (S, ¢;11) for the (i + 1)-configuration
(g1, -, i, qit1)- Note that the 0-configuration is the empty tuple (). Further, we
derive the transition relation for configurations by point-wise application of the
respective d;’s. We define d<;({q1,q2,...4i),0) as (01(q1, (o)), 02(q2, {0, ¢1)), . . ).
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Note that we will omit the “< ¢”-subscript if it is clear from context, and by
just writing “configuration”, we mean an n-configuration.

Notice that A describes a standard semiautomaton D4 over X', whose states
are the configurations of A of level n, and its transition function is d<y,. If there
are up to j states in each level of A, there are up to j™ states in D 4. Observe that
when A is a reset cascade, it can be translated to an equivalent reset cascade
with up to nlogj levels, and 2 states in each level [13, Ex. 1.10.2].

For a state ¢ € Q; of level i of a reset cascade, we denote by Enter(q), Stay(q),
and Leave(q) C X' x Q1 X -+ X Q;_1 the sets of (combined) letters that enter
g, stay in it, and leave it, respectively. These are sets of pairs (o, S), where S
is an (i—1)-configuration and o € X. Notice that Enter(q) C Stay(q), and that
Leave(q) is the complement of Stay(q) (w.r.t. the relevant (combined) letters).

A semiautomaton (X, @,0) is homomorphic to a cascade (X, Ay,..., A,) if
there exists a partial surjective function ¢: Q1 x --- x @, — @, such that for
every 0 € X and S € Q1 X -+ X Qp, we have 6(¢(S5),0) = ¢(d<n(S,0)).

Proposition 6 (Part of the Krohn-Rhodes-Holonomy Decomposition
[13, Corollary II.7.2], [25, Theorem 3]). Every counter-free deterministic
semiautomaton D with n states is homomorphic to a reset cascade A with up to
2" levels and 2™ states in each level.

Remark 1. The Krohn-Rhodes and Holonomy decomposition theorems consider
also more general cascades and give results with respect to arbitrary semiauto-
mata. The Holonomy decomposition in [13], as opposed to many other proofs
of the Krohn-Rhodes decomposition, guarantees up to 2™ levels with up to 2"
states in each level. Yet, it shows that A covers D, allowing A to operate over
an alphabet different from that of D. In [25,26,24], the algebraic proof of [13] is
translated to an automata-theoretic one, providing the stated homomorphism.
It is also stated in [25, Theorem 3.1], [26, Corollary 20], and [24, Corollary 2]
that the number of configurations in A is singly exponential in n, but to the
best of our understanding they do not provide an explicit proof for it.

Cascades with acceptance conditions. As a cascade A describes a standard semi-
automaton (whose states are the configurations of A), we can add to it an initial
configuration and an acceptance condition to make it a standard deterministic
automaton. We show below that the homomorphism between an automaton and
a cascade can be extended to also transfer the same acceptance condition.

Proposition 7. Let D be a deterministic Biichi, coBiuichi or Rabin automaton,
with a semiautomaton homomorphic to a cascade A. There is respectively a
deterministic Biichi, coBlicht or Rabin automaton D’ equivalent to D with semi-
automaton A. For Rabin, D and D’ have the same number of acceptance pairs.

Proposition 8. Consider a deterministic Muller automaton D with n states,
whose semiautomaton is homomorphic to a reset cascade A with m configura-
tions. Then there is a deterministic Muller automaton D’ equivalent to D, whose
semiautomaton is A and its Muller condition has up to 2°0™) acceptance sets.
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4.2 Encoding Reachability within Reset Cascades by LTL Formulas

For the rest of this section, let us fix a set of atomic propositions AP, an alphabet
X =247 and a reset cascade A = (¥, A1, A, ..., A,).

The main reachability formula. For every level i of A, three configurations S, B
and T of level i, and two LTL formulas 8 and 7, we will define the LTL formula
S~~~ T (1) with the intended semantics that it holds on a word w € X¢ iff

A goes from the ‘starting’ configuration S to the ‘target’ configuration 7" along
some prefix u of w, such that the suffix of w after u satisfies 7 and the path
along u avoids the ‘bad’ configuration B with a suffix satisfying 3.

Auziliary reachability formulas. We will formally define the main reachability
formula by induction on the level ¢ of the involved configurations, and using
four auxiliary formulas, whose intended semantics is described in Table 1. These
formulas distinguish between the case that the top-level state is unchanged along
the reachability path, denoted with a solid arrow —, and the case that it is
changed, denoted by a dashed arrow ---+. They also have dual, weak, versions.

Observe that intuitively S S T (1) is an extended Until operator, while

its dual S ~~2% T (1) = —(S ~~~ B (B)) is an extended Weak until (or Release)
BAL =L

operator. We build the formulas so that for appropriate choices of 5 and 7, the
(strong) reachability formulas 1, 3, and 5 (as numbered in Table 1) are syntactic
co-safety and the weak formulas 2 and 4 are syntactic safety formulas.

Formulas 1 and 2. The main formula is simply defined as the union of two
auxiliary formulas, corresponding to whether or not the top-level state changes,
and its weak version is defined to be its dual.

(=8)Ur if S =)

S %& T (1) = {S %) T(t)V S :B:@+ T (1) otherwise.

S%T(T) = ﬁ<S~;~@wB(ﬂ)>

Formula 3. Since the formula should ensure that the top-level state s is un-
changed, we first distinguish between four cases, depending on which of the
source configuration (S, s), bad configuration (B,b), and target configuration
(T,t) are equal. The definitions of the four cases only differ in whether or not
each of 8 and 7 are satisfied in the first position of the word.

We define them using an intermediate common formula that is indifferent
to the first position, which we mark by “> 0” on top of the arrow. We then
define the “> 07 formula by using the main reachability formula with respect
to a lower level, namely with respect to the configurations S and T instead of
(S, s) and (T, t), and having corresponding disjunctions and conjunctions on all
the combined letters of the top level that belong to Stay(s) and Leave(s).
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Reachability formula ¢

Intended semantics
Intuitively: Reading a word w from the configuration S or (S, s)
Formally: w ¢ <

S, s ) (T
A >M<Tt>()

weak

(S, s) e (T,t) (1)

not reaching B(8) until reaching T'(7).
di > 0. 5(3, w[o,,n) TA Wi ': T
A (%) € [0-4). 8(S,wi0.) £ BV wy) ¥ 6)

reaching T'(7) releases not reaching B(/3).
Vi > 0. (5(S,wio..iy) = B Awp. ) = B)
— (35 €[0.9). 6(S,wp.5) =T Ny =)

not reaching (B, b)(3) until reaching (7', ¢)(7), while staying in s.

Ji > 0. 5((5 s),w[o o) =(T,t) Nw.)
4

A (V5 €[0..4). 6((S,s),wpo..;)) # (B,b) Vwy. ) = B)

reaching (T, t)(7) releases not (reaching (B, b)(3) or leaving s).
Vi > 0. ((6((S,5), wpo..0)) = (B,b) ANwii.y = B) )
= (35 €[0..1). 6((S, 5), wo..5)) = (Ts t) ANwy.) = 7)

not reaching (B, b)(3) until reaching (T t)(T) and leaving s.

Fi1,i0 > 0. 5((S, s), wo..i7)) = (T, t) A 1ET
(S,5) =====-=» (T, ) (7)
A (Vj2 € [0..max(i1—1,142)]. 6((S, s), w(o..j,)) # (B,b)
Vo wi,.) E B)
Table 1. The intended semantics of reachability formulas. show

the difference between the auxiliary formulas and the first or second (main) formula.

(S, s) 4> (T,t) (1) =
(S, s) {m}> (T, t) (1) if (S, s) # (B,b) and (S, s) # (T t)
(S, s) M (T,t)y (T) VT if (S, s) # (B,b) and (S, s) = (T t)
S, s 20 T,t) (1) A — S, s B,b) and (S, s T,
( >M( ) (r)A-p if (S,5) = (B,b) and (S, s) # (T’ )
((S, s) ﬁ (T,t) (1) A —ﬂ) v if (S,s) = (B,b) and (S, s) = (T,t)
where (S, s) = (T,t) (1) = \/ <S s T (0 A XT)
BB, (0,T")EStay(s) <

s.t. (T',8) S (T,t)
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A /\ S~ T (6 AXT) A /\ S‘VWWW‘)TI(O'/\XT)>
(n,L)€ELeave(s) (p,B’)EStay(s)
s.t. (B',s)5(B,b)

Formula 4. Tts intended semantics is also that the top-level state s is unchanged,
but we weaken Formula 3 by not enforcing that the target configuration (T, ¢) is
reached and 7 is satisfied. Thus as long as the top-level state s stays unchanged
and the bad configuration (B, b) is not reached while satisfying 8, Formula 4 is
also satisfied. Note that since both Formula 3 and Formula 4 need to ensure that
the top-level state s is unchanged they cannot simply be defined as the dual of
each other. However, they share the same construction principle:

weak

(S, s) M} (T,t) (1) =

weak,>0

(S, 5) % (T, t) (7) if (S, s) # (B,b) and (S, s) # (T, 1)
(S, s) me;)) (T,t) (1) V T if (S, s) # (B,b) and (S, s) = (T}t)
(S, 5) M}f;(ﬂ £) (1) A =B if (S, s) = (B,b) and (S, s) # (T, t)
((S, ) m (T, 1) (7) V T> A=B if (S,s) = (B,b) and (S, s) = (T, 1)

where

—

T,t) (T

G L T (o ANXT)A G~ T (o AN XT) )
\/ (<”le>/\ D). /\ BpAXE)

~—

<S, 5> weak, >0
TBHM8).

(o, T")EStay(s) ELeave(s) (p,B’")€EStay(s)
s.t. (T7,8) S (T,t) s.t. (B',s)%(B,b)
\ < /N S S(false) A\ S S (false)>
(n,Lyeleave(s) DFRL (0,5 yeStay(s) D PAXEL

s.t. (B',s)%(B,b)

Formula 5. The definition of the last reachability formula is the most challenging,
since the top-level state changes (s # t), which prevents the direct usage of lower
level configurations.

Intuitively, before reaching the target configuration (7', t), the run must see a
combined letter (o, T') € Enter(t), after which the top-level state ¢ is preserved
and the bad situation (B, b)(5) is avoided. This is line (1) of the definition.

The run must also not see (B,b)(3) before reaching T”, which is handled in
line (2), whose difference from line (1) is the additional constraint on the path
from S to T”. (Line (1) is required for the case that Enter(b) is empty.) We use
Formula 4 for that constraint, rather than Formula 3 which could also be used,
in order to ensure that Formula 5 can be a syntactic co-safety formula.
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Lastly, line (3) ensures that the top-level state is indeed changed.

\ (sm T (an(5(<T’,.>,o) Ty (T, t) (T))) A

(o, T")€E
Enter(t)

N\ S

(MRE  RuAXGUR = (B,b)(5)))
Enter(b) T+
= if (L,s) = (B,b
A VAR T E— A N p it (L) =(B,b)
(oLye TBWNE) true otherwise.
Leave(s)

We prove the correctness of the above definitions with respect to the intended
meaning of Table 1 by induction on the level of the involved configurations.

Lemma 4. The intended semantics of Table 1 hold for all infinite words w €
Y@ = (247)%  configurations S, B, T of level m < n, states s,b,t in level m + 1
(when m < n), and LTL formulas 8 and T over AP.

Using the same induction principle we prove that the reachability formulas
stay within certain classes of the syntactic future hierarchy (Definition 1). We
use S ey T (Y) € Z as a shorthand for saying that for every formulas g € X

and 7 € Y, the formula S~~~ T (7) is in Z.
BAL

Lemma 5. Let S, B, T be configurations of level m < n, and let s,b,t be states
in level m 4+ 1 (when m < n). Then for i > 1 it holds that:

- S%"" T (%), (S,s) m (T,t) (X:), (S,s) RN (T,t) () € %

y

= S T(IL), (S,s) —=—— (T,1) (IL) € II,
B TBoHL)

4.3 Depth and Length Analysis

We analyze the length and temporal-nesting depth of the LTL reachability for-
mulas defined in Section 4.2. Notice that both measures are of independent
interest, as there might be a non-elementary gap between the depth and length
of LTL formulas [14, Theorem 6]. Since we provide upper bounds, the bound on
the length of formulas obviously gives also a bound on their size.

We consider a reset cascade A with n levels, as in Section 4.2, and further
assume for the length and depth analysis that it has up to n states in each level.
(This assumption holds in the reset cascades that result from the Krohn-Rohdes
decomposition as per Proposition 6.)

We define for each of the five reachability formulas a depth function D, (i, d)
and a length function L,(i,1), where x refers to the number of the reachability

T (0 A x(a(<T’7 3, 0) T (T, t) (T))>> (2)
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formula, to bound the depth and length of the formulas. These depend on the
level i of its input configurations S, B and T, and the maximal depth d and
length [ of its input formulas 8 and 7. For the main (first) reachability formula,
we also use D and L, standing for D; and L;. For example, the length of the first
formula S iy T (1) over configurations S, B and T of level 7 and formulas

and 7 of length up to 77 is bounded by the value of L;(7,77).

For simplicity, we consider the LTL representation of an alphabet letter o € X/
to be of length 1, while its actual length is 3log, | X|. This increase is due to the
need to encode an alphabet letter o € X = 247 as a conjunction of atomic
propositions in AP. The representation length can be multiplied by the total
length of the final relevant formula (e.g., a formula equivalent to the entire reset
cascade), since it remains constant along all steps of our inductive computation.

We provide in Table 2 upper bounds on the depth and length functions, rel-
ative to values of other depth and length functions with respect to configurations
of the same or lower-by-one level. The table is constructed by following the syn-
tactic definitions of the reachability formulas, and applying basic simplifications
to the resulting expressions. For example, L1(0,1) = 242! standing for the length
of (=4)Ur. In Lemma 6 we will use Table 2 to bound the absolute depth and
length of the main reachability formula.

Depth Analysis. The temporal nesting depth of the main reachability formula
S S T (7) is intuitively exponential in the number n of levels of the reset

cascade (linear in the number of configurations), since it is defined inductively
along these levels, and the depth of a level-(i + 1) formula is about twice the
depth of a level-i formula. The parameters of the reachability formula are both
the configurations S, B and T of level 4, and the formulas 8 and 7; yet, the
depth of the reachability formula only linearly depends on the depth of 8 and 7.

Length Analysis. Intuitively, the overall length of the main reachability formula
S ~~~~ T (1) with respect to configurations of the top level is doubly exponential

in the number n of levels of the reset cascade (and thus singly exponential in
the number of configurations), since the formula is defined inductively along
these levels, and the length L(7,1) is roughly L(i—1,1) - L(¢—1,1). More precisely,
L(é,1) =1+ f(i) for some doubly exponential function f(4).

Now, why is L(¢,1) roughly equal to L(i—1,1) - L(i—1,1)? The dominant
component of the level-i reachability formula is line (2) in the definition of
(S, 8) ——----- » (T,t) (7). It is a level-(i—1) reachability formula whose formula-

parameters are themselves auxiliary reachability formulas of level ¢ with formula
parameters of length [. The length of an auxiliary reachability formula of level 4 is
roughly as of the main reachability formula of level i—1, implying that the length
of L;(1) is roughly L;_1(L;—1(1)). By the inductive proof that L;_1(1) = I- f(i—1),
we get that Ll(l) = Li_l(Li_l(l)) = Li_1(l) : f(i—l) =1 f(i—l) . f(i—l).

As for the many disjunctions and conjunctions that appear in the formulas,
observe that the number of disjuncts and conjuncts does not depend on the
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Reachability formula ¢ Bounds on depth(p) and length |¢|
d+1 ifi=0
Dl(iv d) < N . . b .
max(Ds(i,d), Ds(¢,d)) otherwise.
S~ T (1)
. 2421 ifi=0
Li(é,0) < ‘ , .
1+ Ls(é,0) + Ls(i,1) otherwise.
§ T T (1) D2 (i,d) = D1(4,d)
BAL

Lo(i,1) =1+ Li(i,0)

D3(i7d) S Dl(i_17d+ 1)
Ls(i, 1) <3420+ |Zn' " (14L1(i—1, 34+0)+
1+ |2 (L1 (i—1,3+1) + 1)+
14 |Zn' " (Li(i—1,3+1) + 1))
< 3420+ 4| X220V, (-1, 14-3)

S, s ) (T
A >M><Tt>()

Da(i,d) < Da(i—1,d+1) = D1(i—1,d + 1)
459 @ TP L) <3420+ (L4 | S ) (1+ D'~ (1 + La(i-1, 143))
< 342044222 VL (i-1,1 + 3)

D5(i,d) < D1(i—1,max(1 + D3(i,d), 1 + Da(i,d)))
Ls(i, ) < |Zn'~'- (Li(i — 1,34 Ls(i,0)) + 2+
|Z|n =" (La(i — 1, max(3 4 Ls(4,1), 3 4 La(i,1))) + 1))
+1 4+ X0 (1 + L3 (5,3 + 1))
Table 2. The relative depths and lengths of the reachability formulas over configura-
tions of level 4, and LTL formulas 8 and 7 of depth at most d and length at most [. For
the first two reachability formulas, we consider ¢ > 0 and for the other formulas ¢ > 1.

formula-parameters 5 and 7, but only the level i of the configurations S, B, and
T. Hence, they do not dominate the growth rate of the overall formula length.

Lemma 6. Consider a reset cascade A with n levels and up to n states in each
level, and a formula ( = S ~~~~ T (1) with configurations S, B and T of A of

level i < n. Let d = max(depth(S3),depth(7)) and let | = max(|8|, |7]). Then:
(a) depth(C) <d+3" and (b) [¢] <1-(10|Z|>n)*

Lemma 6 is proven by induction on i. The details are given in Appendix A.4.

4.4 Translating Deterministic Counter-Free Automata to LTL

We use the reachability formulas of Section 4.2 to translate a reset cascade A to
an equivalent LTL formula. Our LTL formulation of A’s acceptance condition
is based on an LTL formulation of “C' is visited finitely/infinitely often along
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a run of A on a word w”, for a given configuration C' of A. It thus applies
to every w-regular acceptance condition and by Propositions 6 and 8 to every
deterministic counter-free w-regular automaton. We introduce two shorthands to
the main reachability formula: the first is satisfied if we reach T from S without
any side constraints (which is always satisfied in the case that S = T'), and the
second requires that we reach it along a nonempty prefix.

S~ T = 8~~~ T (true) S22 T = o ANX(0(S,0)~>T)
Tfalse) U\E/Z( )

With Lemmas 4 and 5 we then obtain (a proof is given in Appendix A.5):

Lemma 7. Consider a reset cascade A = (247, A1, ..., A,) together with an
initial configuration L and some configuration C. Then for a word w € (QAP)w,
the run of A on w starting in L visits C' finitely often iff w satisfies the formula

Fin(C) i= (L~~~ C) V L~~~ C’(ﬂ(C~>~9~+ (). Furthermore, Fin(C) € X5.
We are now in position to give our main result.

Theorem 2. Every counter-free deterministic w-regular automaton D over al-
phabet 247 with n states (and any acceptance condition) is equivalent to an LTL
formula ¢ over atomic propositions AP of double-exponential temporal-nesting
depth (in O(22")) and triple-exponential length (in 220(2“). If D is a looping-
Biichi, looping-coBriichi, weak, Biichi, coBiichi, or Muller automaton then ¢ is
respectively in the I, X1, Aq, Iy, X5, or Ay syntactic fragment of LTL.

Proof. We first prove the general result, w.r.t. an arbitrary counter-free determ-
inistic automaton D, and then take into account D’s acceptance condition, to
establish the last part of the theorem.

Consider a counter-free deterministic w-regular automaton D with some ac-
ceptance condition and n states. Recall that there is a Muller automaton D’ equi-
valent to D over the semiautomaton of D. By Propositions 6 and 8, D’ is equival-
ent to a deterministic Muller automaton D" that is described by a reset cascade
A with up to m = 2" levels and m states in each level (and thus up to m™ con-
figurations), and whose acceptance condition has up to k € 20(m™n) — 90(m™)
acceptance sets. An LTL formula ¢ equivalent to D can be defined by formulating
the acceptance condition of D’ along Lemma 7.

Recall that the Muller condition is a k-elements disjunction, where each dis-
junct M is a conjunction of requirements to visit infinitely often every configur-
ation from some set G and finitely often every configuration not in GG. Observe
that M can be formulated as a disjunction over all the configurations in D" (at
most m™), having for each configuration C' the LTL formula Fin(C) or = Fin(C),
as defined in Lemma 7, depending on whether or not C' € G. Hence, the overall
formula ¢ is a combination of disjunctions and conjunctions of up to k-m™ sub-
formulas of the form Fin(C) or —=Fin(C). Therefore, the depth of ¢ is the same
as of Fin(C), while || € O(km™|Fin(C)|) < 2°m™)|Fin(C)|. For calculating
depth(Fin(C)) and |Fin(C)|, we use Lemma 6 bottom up over the subformulas
of Fin(C).
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Depth.
depth(L ~~ C) < 3™ ; depth(C ~2% C) < 3™ + 1

depth(L ~ C(=(C ~22% C))) < 2-3m + 1

depth(Fin(C)) = max(3™,2-3™ +1) € O(3™) = 0(2*"),
implying depth(p) € O(22").

Length.
L~ C| < (10| 52m)4" 5 |C~22% C| < (4]2)]) - (10| 22m)4"
20 (m)

|F7,n(C)| c 2+ (10|2‘2m)4m 4 (|E‘m)20(m) c (|E|m)20(m>,

Therefore, || € 200m™) . (m™) - ((|1X|m)2* ™) = | 227",

Expressing the length of ¢ with respect to the number n of states in the
automaton D, and taking into account the fact that the alphabet X has at most
n™ different letters (any additional letter must have the same behavior as another
letter), we have: |¢| € |5]27%" < (21)27¢" = 22907,

We now sketch the second part of the theorem connecting the syntactic hier-
archy and the different acceptance conditions of D. We only consider the cases
in which D is either a Muller or a coBiichi automaton. The complete analysis is
given in Appendix A.5. If D is a Muller automaton, then the overall formula ¢ is
in As, since it is a Boolean combination of Fin(C') formulas, which by Lemma 7
belong to Ys. If D is a coBiichi automaton, then we construct the formula ¢
directly from the coBiichi condition a: ¢ is a conjunction of Fin(C') formulas
over all configurations C' that are mapped to states in a. As Fin(C) belongs to
25, so does ¢. O

Observe that by Theorem 2, we get the following result, extending the result
of [38, Theorem 3.2] that only considers Rabin automata.

Corollary 1. Fvery counter-free deterministic w-regular automaton (with any
acceptance condition) recognises an LTL-definable language.

Proof. Recall that every deterministic w-regular automaton is equivalent to a
deterministic Muller automaton over the same semiautomaton (see, e.g., [3]).
The claim is then a direct consequence of Theorem 2. O

Remark 2. Theorem 2 can be adapted to the finite-word setting. While on infin-
ite words, the neXt operator is self-dual, i.e., =X1) is equivalent to X—), over
finite words, this equivalence does not hold on words of length 1. Thus X gains
a dual weak next, defined as Xw := = X—. In the finite word case, syntactic
cosafety (safety) formulas are constructed from true, false, a, —a, V, A, and the
temporal operators U and X (R and 5{) Observe that X and X differ only on
words of length 1, and thus the only required change in our translation scheme
is to replace some Xs with Xs in the reachability formula 4. For finite words a
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translation of a counter-free DFA to an LTL formula with only a double expo-
nential size blow-up is known [41]; however, unlike our translation, it does not
guarantee syntactic safety (cosafety) formulas for safety (cosafety) languages.

Lastly, we provide a corollary on looping automata, using Theorem 2 and
the following known result.

Proposition 9 (Rephrased Theorem 13 from [28]). Let D be a determin-
istic looping-Biichi automaton with n states that recognises an LTL-definable lan-
guage. Then there exists an equivalent counter-free deterministic looping-Bichi
automaton D' with at most n states.

Corollary 2. Every deterministic looping-Biichi (looping-coBiichi) automaton
with n states that recognises an LTL-definable language is equivalent to an LTL

formula ¢ € ITy (£,) of temporal nesting depth in O(22") and length in 929",

This is an elementary upper bound for two constructions for which either the
upper bound was unknown or non-elementary: the liveness-safety decomposition
of LTL [28] and the translation of semantic safety LTL to syntactic safety LTL.

5 Conclusions

We have studied the size trade-offs between LTL and automata. Over a un-
ary alphabet, the situation is straightforward and we provided tight complexity
bounds. The general case of infinite words over an arbitrary alphabet is more
complex. We gave to our knowledge the first elementary complexity bound on the
translation of counter-free deterministic w-regular automata into LTL formulas.
Every w-regular automaton recognising an LTL-definable language can be
translated to a counter-free deterministic automaton [38, Theorem 3.2]. Yet, we
are unaware of a bound on the size blow-up involved in such a translation. Once
established, it can be combined with our translation to get a general bound on
the translation of automata to LTL. It will also provide a (currently unknown®)
elementary upper bound on the translation of LTL with both future and past
operators to LTL with only future operators (which is the version of LTL that we
have considered), as (both version of) LTL can be translated to nondeterministic
Biichi automata with a single exponential size blow-up [40, Theorem 2.1].
While going from non-elementary to double-exponential depth and triple-ex-
ponential length is an improvement, these upper bounds might not be tight—
there is currently no known non-linear lower bound! Closing this gap is a chal-
lenging open problem, which might require new lower bound techniques for al-
ternating automata, as LTL formulas are an inherently alternating model.

Acknowledgements. We thank Moshe Vardi and Orna Kupferman for suggesting
studying the succinctness gap between semantic and syntactic safe formulas, and
Mikotaj Bojanczyk for answering our questions on algebraic automata theory.

6 In consultation with the author of [29], we have confirmed that while the lower bound
provided in that paper holds, the stated upper bound is erroneous.
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A Omitted Proofs

A.1 Proofs from Section 3

Proposition 1 (Extended Wolper’s theorem, Folklore). Consider an LTL
formula o with depth(p) = n over the atomic propositions AP, and let X = 247,
Then for every words u € X*, v € X1 and t € X*, and numbers i,7 > n, ¢ has
the same truth value on the words (uv't) and (uvit).

Proof. Consider an LTL formula ¢ and words w; = (uv’t) and w; = (uv’t), such
that 7,7 > depth(yp). We prove the claim by induction on the structure of .

Base case: @ is an atomic proposition or a Boolean constant. Indeed, depth(¢) =
0 and we have that w; = ¢ iff w; [= ¢, because the first letter of these two words,
which is the first letter of w if u is not empty and the first letter of v otherwise,
is the same.

Induction step: We assume that the claim holds for all strict subformulas of
©. Let 11 and 1 be strict subformulas of ¢. We show that the claim holds for:

— @ = =1 Since depth(p) = depth(¢), it follows that i,j > depth(¢1), and
therefore by the induction assumption w; = ¢4 iff w; = 91, implying that
— ¢ = 11 A tg: Since depth(p) = max(depth(wy),depth(vs)), it follows that
i,7 > depth(¢1) and 4, j > depth(2)2). Therefore by the induction assumption
(w; = iff wj =) and (w; = 1o iff wj = 12). Hence, w; = ¢y A1)y iff

wj = 1 A .
— ¢ = X41: Recall that a word w satisfies ¢ iff w! satisfies 1);. Observe that
wf = w'v'" ' and wj = w'v/7't, where v’ = (uv)'. Since depth(y) =

depth(y) —1, it follows that ¢ — 1,5 — 1 > depth(¢1). Hence, by the induction
assumption w;} =91 iff w} |= 41, and therefore w; = ¢ iff w; = ¢.

— ¢ = 1 Uyhy: We will show that if w; satisfies ¢ then so does w;.
If w; satisfies ¢ then there is a position p of w;, such that w? = 19 and
for every k < p, w¥ |= 1. Let o be the position of w; that appears at the
beginning of the v-block that is depth(y) blocks of v before the ¢ part of w;,
namely o = |uv’~9Pth(®)|  (See Figure 2.)

o
W u_| oo, vyt
z I I ! I I I I
0 or more blocks of v depth(¢) blocks of v

Figure 2. The structure of the word w; from the proof of Proposition 1.

We split the proof into disjoint cases, depending on the location of p within
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e p < |ul: Let v/ be the infix of w; from p to the end of u, namely
v = wilp..lul = 1]. Then w] = w'v't and w! = w'v/t. Since i,j >
depth(p) > depth(12), by the induction assumption w} = s iff wf = s
and therefore w? [= ;. Likewise, since 4,j > depth(¢) > depth(1),
by the induction assumption for every position m < p, wl* E ¢ iff
wj' = 11 and therefore wi* = ;.

e p € [Jul..o—1]: Let p’ be the position in w; that appears in the first
v-block after v and that is located within that v-block like p is located
within its v-block. That is, p’ = |u| + ((p — |u]) mod |v|). Let v’ be the
remaining suffix in the v-block of p and p/, that is v’ = w;[p’+1..|u|+|v]].
Let h be the number of v-blocks that appear after p and before the ¢
part of w;, that is h = depth(¢) + | (0 — p)/|v|]. Then w? = w/v"t and
w? = u/'v7~t. Since h > depth(y) > depth(1)2) and j — 1 > depth(p) >
depth(t)2), we have by the induction assumption that wf/ E o iff Wl

12, and therefore wf, E s.

Now, for every position m < p’, let «’ be the infix of w; from m to the end
of the first v-block of w;, that is v’ = w;[m..|u|+|v[]. Then w! = v/'v'~1¢
and w}* = u'v?~'t. Since i —1 > depth(¢1) and j —1 > depth(¢/1), by the
induction assumption w;" = 91 iff w}* = 1 and therefore wi* = ;.

e p > o: Let p’ and o’ be the positions in w; that are at the same distance
from the t part of w; as p and o are from the ¢ part w;, namely o' =
|uvd ~9ePth(#) | and p’ = o’ + (p—o0). Observe that w¢ = w9 and wfl = w?,
implying that w?l = s,

Further, for every position m € [0 — |v]|..p] of w;, let m’ be the corres-
ponding position in w;, namely m’ = o’ 4+ (m —o0). Then w;-”/ =w;", and
accordingly w§”/ = .

Now, for every position m’ € [|u|..o — |v| — 1], we have by the induc-
tion assumption that w;-”“/ = 1y iff w;"IHU‘ = 1 (as both words have
the same prefix until the end of the first v block, followed by at least
depth(t)1) + 1 blocks of v and then t), implying that w}"/ = 1.

Finally, for every position m € [0..Ju| — 1], we have by the induction
assumption that w;" |= ¢ iff w]* = 91, implying that w}* = 1.

O

Proposition 2. Given an LTL formula ¢ with depth(v) = n on finite words
over the unary alphabet {a}, a® € L(p) for all i >n or a* ¢ L(yp) for all i > n.

Proof. Let # = {p} be the shorthand for a new atomic proposition p. Given a
unary LTL formula recognising L C {a}*, it can be turned into a general LTL
formula of linear length that recognises L' = {v#*“ | v € L} over the alphabet
3’ = 2{P} Then, the statement is a direct consequence of Proposition 1. O

Proposition 3. Consider a language L C {a}™ that agrees on all words of
length over n, that is, has the same truth value on all such words. Then there is
an LTL formula of size in O(n) with language L.
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Proof. The very weak deterministic automaton for L consists of n + 2 states
{0,...,n+ 1}, with an a-transition from state i to state i + 1 and a self loop at
state n + 1. The state i is accepting whenever a’ € L. O

Theorem 1. The size blow-up involved in translating deterministic, nondetermin-
istic, and alternating automata on finite unary words to LTL, when possible, is
O(n), ©(n?), and O(2"), respectively.

Proof. Deterministic automata: For the upper bound, consider a DFA A recog-
nising an LTL definable language. By a pumping argument, if w € L(A) for some
w longer than n, then L(.A) is infinite. Considering the dual automaton A’ of A,
recognising the complement language, by the pumping argument if w ¢ L(.A) for
some w longer than n, then the complement of L(A) is infinite. Hence, by Pro-
position 2, L(.A) agrees on all words of length more than n, and by Proposition 3
there is an LTL formula for it of length in O(n). As for the lower bound, since
there is a DFA of size n recognising ¥, it directly follows from Proposition 1.
Nondeterministic automata: Directly follows from Lemmas 1 and 2.
Alternating automata: Directly follows from Lemma 3 and Proposition 5. O

Lemma 1. FEvery alternating automaton with n states that recognises an LTL-
expressible language L C {a}™ is equivalent to an LTL formula of size in O(2").

Proof. First recall that the run of an alternating automaton is a tree, of which
all paths are accepting if and only if the run itself is accepting. These runs can
be pumped in the same way as runs of nondeterministic automata, except that
the run to be pumped must be of length over 2" to guarantee that the set of
states in a cross-section of the run are repeated.

Then, by a pumping argument, if w € L(.A) for some w longer than 2", then
L(A) is infinite: indeed, let A" be an NFA equivalent to A of size at most 2";
if A" accepts a word longer than 2", then its run sees some state more than
once and can be pumped to build infinitely many accepting runs. Dually, since
AFA are easy to complement, if w’ ¢ L(A) for some w’ longer than 2", then
X*\ L(A) is infinite. The existence of both w € L(A) and w’ ¢ L(.A) longer than
2" therefore contradicts Lemma 2. We conclude that L(A) agrees on all words
of length over 2™. Thus, by Proposition 3 there is an LTL formula for L(A) of
length in O(2™). O

Lemma 2 (Adaptation of [22, proof of Theorem 1]). For everyn € N\{0},
there is a weak alternating automaton with 12n states and transition function of
size in O(n) recognising the language {a®" }.

Proof. The idea of the construction is that it represents an m-bit up-counter,
having two states for each bit, one corresponding to 1, one to 0 (see Fig. 1).
Given a way to resolve the nondeterministic choices, the resulting set of
“active” states of the automaton represents a configuration of the counter: The
nondeterminism in each bit-state chooses whether to change the bit’s value (go-
ing left in Fig. 1), in which case the universality ensures that all lower bits are
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set to 0, or to preserve the bit’s value (going right in Fig. 1), in which case the
universality ensures that at least one lower bit is set to 1.

The automaton thus preserves the invariant that a correct update (for ex-
ample from 011 to 100) ensures that the number of active states is constant, in
particular, if all updates are correct, then exactly one state per bit is active at
a time; an incorrect update on the other hand increases the number of active
states. The set of accepting states corresponds to the bit-configuration for 271,
where a transition to a state g; o, for every ¢ < n, can be changed to a move
t0 qace, provided that it is on the last letter of the input word. (There is no
transition out of gu..). The only way to build an accepting run is to correctly
update the counter at each step; an incorrect update ensures that both states of
some bit are set from thereon, of which one must be rejecting.

As for the automaton size, which is the number of subformulas in the trans-
ition function, observe that it is linear in n, since there are 2n states and the total
number of subformulas in the transition function is as follows: The transition
functions of g1, and g1,1 have together four subformulas, and the transition
function of every other state g(;.) adds up to 4 subformulas: (i) the topmost
disjunction of whether to change the bit’s value or not; (ii)&(iii) the univer-
sality involved in each of these two options; and (iv) within each of the two
universality subformulas — a disjunction or conjunction between g(;_;.) and
(q(i=1,)s+++»4(i—1,.)), where the latter subformula (within the parenthesis) is
already used in the transition function of g;;_;,.) and these two formulas (one
of conjunction and one of disjunction) is used by both ¢; ¢ and ¢; 1 (except for
@n,1 = Gace; Which has no outgoing transitions). O

Lemma 3. Fvery nondeterministic automaton with n states recognising an LTL-
expressible language L C {a}™ is equivalent to an LTL formula of size in O(n?).

Proof. If L(A) is finite, then by a pumping argument, A only accepts words up
to length n, and by Proposition 3 we are done. We consider co-finite L(.A).

We will argue using 2-way deterministic automata, which are deterministic
automata that process words of the form Fw-, where - and - are start- and
end-of-word markers respectively, and where transitions specify whether to read
the letter to the right or to the left of the current position. They accept by
reaching an end state, and reject by reaching a rejecting state or by failing to
terminate. For a more formal definition, see [16]. We will use the facts that a
unary NFA can be turned into a 2-way DFA of size O(n?) [8], that a 2-way DFA
of size m can be complemented into one of size 4m [16], and that the smallest
2-way DFA recognising {a"} is of length k + 2 [1].

The NFA A can be turned into a 2-way DFA D with O(n?) states recognising
the same language. From D, we can obtain a 2-way DFA D’ that recognises
a* \ {a*}, where a” is the longest word not in L(A), as follows: we keep the
states and transitions involved in the run of D on FaF-, which is rejecting and
must read - (since, by the co-finiteness of L(.A), there are accepted words longer
than a*). Notice that states in D’ may have only some of the transitions they
had in D — only those that are involved in the run on a*. We then add an a-
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transition and a —-transition from all states without such transitions, and these
all lead to the (accepting) end state.

Notice that D’ is still deterministic and not larger than D. It still rejects a*,
on which it has the same run as D, but accepts all other words, which are either
shorter than a* and therefore accepted via one of the new —-transitions, or are
longer than a* and accepted when they read the k + 1** letter.

We can then complement D’ into a 2-way DFA D" of size linear in the size
of D', namely in O(n?), that recognises {a*}. However, since D" must be of size
at least k + 2, we get that k + 2 is at most in O(n?), meaning that the longest
word rejected by A, which is of length k, is of length in O(n?).

Then, there is an equivalent very weak automaton of the size of the longest
word not in L(A), from Lemma 2. O

A.2 Proofs from Section 4.1

Proposition 7. Let D be a deterministic Biichi, coBiichi or Rabin automaton,
with a semiautomaton homomorphic to a cascade A. There is respectively a
deterministic Biichi, coBiichi or Rabin automaton D’ equivalent to D with semi-
automaton A. For Rabin, D and D' have the same number of acceptance pairs.

Proof. We provide the proof for Rabin automata. The proofs for Biichi and
coBiichi automata are special cases of the Rabin case.

Let D = (X,Q,t,0,a), and h be the mapping via which (X, Q,d) is homo-
morphic to A. We shall define a configuration ¢’ of A, and a set o’ of pairs of sets
of configurations of A that will provide the initial state and acceptance condition
of D', making it equivalent to D.

For the initial state of D’, one can choose any configuration ¢/ € h=1(:): A
run of A starting in ¢/ corresponds via h to a run of D starting in h()) = .

As for the acceptance condition, consider the run r’ of D’ on a word w,
starting in ¢/, and let 7 = h(r’) be the corresponding run of D on w. (With
h(r"), we mean the sequence of states of D, obtained by mapping with h each
configuration of 7/.) Then, ' should be accepting iff r is.

Recall that r is accepting iff inf(r)N G # 0 and inf(r) N B = () for some pair
(G, B) € a. Hence, r’ should be accepting “according to (G, B)” iff h(inf(r')) N
G # 0 and h(inf(r')) N B = 0.

Thus, r’ should visit infinitely often some configuration in G’ = h=(G) and
finitely often every configuration in B’ = h~!(B). Hence, there are k acceptance
pairs (G', B’) in o/, each corresponding to an acceptance pair (G, B) in D. O

Proposition 8. Consider a deterministic Muller automaton D with n states,
whose semiautomaton is homomorphic to a reset cascade A with m configura-
tions. Then there is a deterministic Muller automaton D’ equivalent to D, whose
semiautomaton is A and its Muller condition has up to 2°0™) acceptance sets.

Proof. Let D = (X,Q,t,0,«), and h be the mapping via which (X, Q,d) is
homomorphic to A. We shall define a configuration ¢/ of A, and a set o’ of sets



On the Translation of Automata to Linear Temporal Logic 27

of configurations of A that will provide the initial state and acceptance condition
of D', making it equivalent to D.

For the initial state of D’, one can choose any configuration ¢/ € h=1(z): A
run of A starting in ¢/ corresponds via h to a run in D starting in h(t') = ¢.

As for the acceptance condition, consider the run 7’ of D’ on w, starting in
V', and let 7 = h(r’') be the run of D on w (that is defined by mapping each
configuration of 7’ to a state of D via h). Then, r’ should be accepting iff r is.

Recall that r is accepting iff inf(r) = M, for some M = {q1,...q;} € a.
Hence, ' should be accepting “according to M” iff h(inf(r’)) = M. Thus, r/
should visit finitely often every configuration in h=1(Q \ M), and for every i €
[1..1], visit some configurations in G; = h™'(g;) infinitely often.

Since we should consider every choice of configurations in G; = h™1(g;),
where |G;| < m, there are up to 2™ choices for G;, and therefore up to (2™)"
choices for M, each providing a Muller set G of configurations to be visited
infinitely often.

As there are up to 2" sets in «, we end up with up to 27(2™)" € 200" sets
in o. O

A.3 Proofs from Section 4.2

Lemma 4. The intended semantics of Table 1 hold for all infinite words w €
Xw = (24°)% | configurations S, B,T of level m < n, states s,b,t in level m + 1
(when m < n), and LTL formulas 8 and T over AP.

Proof. Observe first that there is no circularity in the definitions of the five
reachability formulas, even though they are defined by each other: Formula 2
is defined on top of formula 1, which is defined on top of formulas 3 and 5,
while formulas 3, 4, and 5 are defined with respect to reachability formulas over
configurations of a lower level.

We prove the statement by induction on the level m of the configurations .S,
B, T in the reachability formulas. We split the proof to five cases corresponding
to the five reachability formulas in Table 1. In order to clarify which equivalence
of the induction hypothesis is used we denote by (I.H.1) the equivalence in
Table 1 for reachability formula 1, (I.H.2) the equivalence for reachability formula
2, and so on.

Reachability formula 1
(m = 0): There is exactly one configuration of level 0 and it is the empty con-
figuration. Thus S =T = B = (). We then derive:

W (5o 0 ()
= wi= (2B)Ur
<~ Ji > 0. W, ) ETAVje [OZ) wj..] bé I3

<= Ji>0.6(0),wp.5)) = O Awp ) FET
A VG €10..9). 6({), wpo..5)) # () Vwp) B
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(m — m+ 1): Let (S,s),(T,t),(B,b) € Q1 X -+ X Q1 be arbitrary config-
urations of level m + 1. Thus we can use the equalities from Table 1 for all
configurations of Q1 X - - - X @, as induction hypotheses. We need to show that:

T,t) A Wi ] Er
We split this into the (=)- and (<«=)-direction:

(=): We further refine this and first assume that the first disjunct is satisfied by
w and defer the other case to a later point in the proof. We then apply (I.H.3)
and derive:

w S,s) — (1,t) (7
= ( >?"Bﬂ’>£@l (T,t) (1)
<~ di > 0. 5((S,s>,w[0“i)) =(T,t) A Wi, ] Er
A (V5 e [OZ) 5({(S, S>,w[0.,j)) # (B, b) vV wj. ] = B)
A (V5 € [0..9). (w[j],d(S,wy..;))) € Stay(s))
= Ji > 0. 5(<S,s>,w[01)) = <T7 t> /\w[i..] ): T
A (Vj € [0..9). 6((S, s), wyo..5)) # (B, b) V wys.) = B)

We now assume that the first disjunct is not satisfied by w and thus the
second disjunct is satisfied by w. We then derive using (I.H.5):

<= iy, i > 0. 5(<S, $>,w[0_4i1)) = <T7 t> AWy ) ): T

A (Fj1 € [0..31). (w[j1],0(S,wo.5,))) € Enter(t)

A (wliz], 8(S,wp..i,))) € Leave(s)

A (V5 € [0..max(i1—1,42)]. 0((S, s),wpo..;)) # (B,b) Vwy;.1 = B)
= 3i>0.6((S, 8>,w[0“i)) = (T,t) A w;. ) =T

A (V5 €]0..9). 5(<S,S>,’LU[0“J<)) # (B, b) Vwy. ¥ B)

(<): We assume that w satisfies the right-hand side of the equation and we
instantiate ¢ to be the smallest non-negative integer such that:

6((S, s),wio.i)) = (T, t) Nw ) E T
A (Vj € [0.4). 3((S, ), wpo..)) # (B,b) V wy;.] K= B)

Assume that for all proper prefixes of wy. ;) the combined letter stays in
s, ie., (w[j],0(S,wyp. ;))) € Stay(s) for all j € [0..4). We then apply (I.H.3)
and obtain that w satisfies (S, s) M) (T, t) () and so the left-hand side of
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the equation is satisfied by w. Thus let k € [0..7) be the smallest non-negative
integer such that:
(wlk],0(S,wio..1))) € Leave(s)

Since k < ¢, we immediately obtain one of the missing preconditions for applying
(ILH.5):
Vja € [0..k]. 6((S; ), wio..jp)) # (B, b) V wyj, ) = 3

The second missing precondition is that we need to find a j; € [0..¢) such that
(wlj1],0(S,wy. j,))) € Enter(t): In the case s # t this is straightforward, since
after reading wyg. ;) we reach (T, t), and thus there must be a j; < ¢ such that
(wlj1],6(S,wp..;,))) € Enter(t). Thus let us assume s = ¢. In general there might
be not such an index j;. However, we have shown that (w[k],(S,wj. x))) €
Leave(s) for some k < i and by the same reasoning as above there must be j;
between k and 7 such that (w[j1],(S, wy. j,))) € Enter(t).
We now can apply (I.H.5) and conclude this direction of the proof.

Reachability formula 2
We proceed by a straightforward derivation for which we use (I.H.1) in the second
step:
wle S~ T (r
=S T (7)

w S ~~~~ B
= wlt e (B)

< —|(E|Z > 0. 5(5,10[01)) =BA Wi ': ﬂ

A (V5 €[0..4). (S, w..5y) # T Vwy. l;ér))
< Vi >0. (0(S,wp..5)) = BAwp;.) E B)

— (35 €[0..9). (S w[o..])) T Awj) ET)

Reachability formula 3
We want to prove the following equivalence:

w#(&S)M( ) (7)

<~ Ji>0.0((S,s), Wio. 1)) (T, t) AW S8
A (Vi1 € [0..4). 6((S, 5), wpo..5,)) # (B,b) Vwy, .| = B)
A (V2 € [0..3). (wlj], 5(5 w. j,))) € Stay(s ))

(=): Assume that w satisfies the left-hand side of the equivalence. Notice that if
w does not satisfy ¢ = (S, s) LN (T, t) (1), then necessarily §((S, s), wig..0)) =
) o0

(T',t) and wo.) = 7 and thus the right-hand side trivially holds for i = 0.

Thus we can assume that w satisfies ¢ and using the same reasoning we know
that either 0((S, s), wyo..0)) = (B, b) or w. | = B does not hold, which takes care
of the case j; =0 in the second line of the right-hand side, assuming ¢ > 0.

Since we have w = ¢, there must be a (0, T") € Stay(s) with 6((T",s),0) =
(T, t) such that the matching disjunct ¢ of ¢ is satisfied by w. Note that this
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immediately implies that s = t. Observe that 1 is a conjunction of formulas with
the shape

S~~~ T (0 AN XT
3 ( )

and we now apply (I.LH.1) to all reachability formulas. Since they all share the
same target, we can instantiate them to the same i’ (where ¢’ is the smallest
non-negative integer satisfying the conditions) such that:

(a) 6(5, w[o i) =T
(b) wli'] =
(c) Wir+1..] |: T
(d) For every (n, L) € Leave(s) and every j € [0..i') at least one of the following
statements holds:
(i) 6(S,wp..5)) # L
(i) wlj] #n
(e) For every (p, B’) € Stay(s) such that 6((B’,s),p) = (B,b) and every j €
[0..7") at least one of the following statements holds:
(i) 6(S,wy..5)) # B’
(i) wlj] # p
(iii) Wij41..] ¥~ B

We now instantiate 7 of the right-hand side with i’ + 1. Remember that we
have (o, T") € Stay(s) and together with (a-c) we obtain the first conjunct of the
right hand side.

We now establish the third conjunct. Note that for every js € [0..i") we have
(W], 6((S, 5), wpo_s»))) € Stay(s), since Stay(s) = (£ x Qy X+ x Q) \ Leave(s)
and by (d) we do not encounter an element of Leave(s) for any jo. Further, for
J2 = 4" we obtain (wl[ja], 6((S, s),wyo. j,))) € Stay(s) from (a,b) and the choice of
(o, T") € Stay(s).

For the second conjunct it remains to show that for every j; € [0..i):

0((S, 8), w0 j,)) # (B,b) Vwy, ) =B

Assume that §((S, s),w. ;,)) = (B,b) (if this is not the case we are immedi-
ately done). Due to the already established third conjunct, we have (w[j; —
1],6(S, wyo..;,—1y)) = {p, B') € Stay(s) and 6((B’,s), p) = (B,b). Thus (e,i) and
(e,ii) cannot hold and (e,iii) must hold for j;(=j + 1).

(«): We assume that w satisfies the right-hand side and instantiate ¢ as the
smallest ¢ > 0 such that:

a) 6((S,s),wio..5)) = (T't)

]
(c) ¥j €[0..4). 6((S,s),wio.5)) # (B, b) Vwy;. ) B
€ [0.9). (w[j],8(S,wp.j))) € Stay(s)
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If i = 0, then due to (a-b) we have immediately w = (S, s) —— (T, t) (7).
TBHME)

Thus without loss of generality we can assume ¢ > 0 from now on. Further, due

to (c) we have that either (S,s) # (B,b) or w [~ 8. Thus it remains to show

that w = (S, s) —=2 (T,t) (7). Define o as w[i — 1] and 7" as §(S, wyg. 4_1))-
WAL o

From (a,d) we then follow:

(e) (o, T") € Stay(s)
(f) 0(S,wp..i—1)) =T" and 6((T", s),0) = (T, t)
(g) w[i_l_] ': g /\XT

We are going to use the induction hypothesis to show that w satisfies the
disjunct corresponding to (o, 7). The first conjunct is satisfied from (f,g) and
(LH.1). From (d) it follows that for every j € [0..4) the tuple (w[j], (S, wyo.;))
is not in Leave(s). Thus for every (n, L) € Leave(s), we either have wy; j = n or
0(S,wi. ;) # L. Thus by (L.H.1) and (f,g) we obtain that w satisfies the second
conjunct. Analogously, from (c) it follows that for every j € [1..4) and for every
(p, B') € Stay(s) such that §((B’,s),p) = (B,b), either §(S,wy. j_1)) # B’ or
wij—1.] = pAXB. Thus by (I.LH.1) and (f,g) we obtain that w satisfies the third
and final conjunct.

Reachability formula 4
We want to prove the following equivalence:

w = (S, ) m:) (T,t) (1)

)

— Vixo. ((5((5 $) wio.s) = (B.B) Awp) = B)
V(i > 0/\( [i— ] (S wip..;—1))) € Leave(s)))
— (37 €[0..9). 5((S, 8), wp. 5)) = (T, t) Nwpj ) ET)

(=): Assume that w satisfies the left-hand side of the equivalence. Then we

immediately obtain from the definition that either 6((S,s), wy.0)) # (B,b) or
weak,>0

wio.] £ B. Further, notice that if w does not satisfy ¢ = (S, s) m (T,t) (1),
then necessarily §((S, s),wjo..0)) = (T, t) and wyo_j |= 7, and thus the right-hand
side trivially holds for all ¢ by instantiating 7 with 0.

Thus we can assume that w satisfies ¢ and using the fact that at least one
of 6((S, s),wo..0)) = (B, b) and wyy j = B does not hold, we only need to prove
the right- hand side for ¢ > 0.

Since we have w = ¢, then either w satisfies the disjunct ¢ in line (2) or
there exists a (o, T") € Stay(s) with §((T”, s),0) = (T, t) such that the matching
disjunct y in (1) is satisfied by w. We assume that the first case holds, and defer
the second case to later.

Note, that when applying the induction hypothesis (I.H.2) to each conjunct of
1, we can simplify the nested existential quantification to false, since w [~ false.
Thus we obtain for all ¢ > 0:
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(a) For every (n, L) € Leave(s) at least one of the following statements holds:
(1) 5($aw[0..i)) # L
(i) wli] # 7
(b) For every (p, B) € Stay(s) such that §((B’, s), p) = (B, b) at least one of the
following statements holds:
(1) 5(57“’[0..1')) #DB
(i) wli] # p
(iil) wyg1) B

Because w and the sequence of generated configurations does not contain a
combined letter that leaves s due to (a), we do have (wli], (S, wyo. ;))) ¢ Leave(s)
for all i > 0. Thus (w[i], 6(S,wj..s))) € Stay(s) for all i > 0. Further, due to (b)
we either do not see a combined letter at position 4 that enters the configuration
(B,b) (and thus §({S, s),wy;41.]) = (B,b)) or the infinite suffix of w1 ; does
not satisfy . From this, we can conclude that the right-hand side holds. (The
case for ¢ = 0 was already established in the second paragraph.)

We now assume that there exists a tuple (o,7”) such that w satisfies the
matching disjunct x of line (1). Note that the existence of (o,7") immediately
implies s = t. Moreover, we can assume that w does not satisfy the disjunct
¥ from line (2). Thus by applying (I.H.2), we know that there exists an k >
0 such that either 6(S,wjo. ) = L and w[k] = n from (n,L) € Leave(s) or
6(S,wp.ky) = B, wlk] = p, and wp41.) = B for some (p, B') € Stay(s) and
S((B',s),p) = (B,b). Thus when we apply the (I.LH.2) to the corresponding
reachability formula of x we obtain a &’ € [0..k) such that §(S, wjo ) = T and
wp.] o A XT7. Observe that x is a conjunction of formulas with the shape

SIS T (0 A XT)
R

and we now apply the induction hypothesis to all reachability formulas. Since
they all share the same “target”, we can instantiate the nested existential quan-
tification to the same j’ (where j’ is the smallest non-negative integer satisfying
the condition) such that:

W1 T
For every (n, L) € Leave(s) and every i’ € [0..5'] at least one of the following
statements holds:
(i) 9(S,wpo..in) # L
(i) wli’] #n
(e) For every (p, B') € Stay(s) such that 6((B’,s),p) = (B,b) and every i’ €
[0..5'] at least one of the following statements holds:
() 9(S,wyo..iny) # B’
(i) wli) #
(iil) wpry1) B
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In order to show that w satisfy the right-hand side of the equation, let now
1 > 0 be an arbitrary integer and we need to prove:

((5((5, 5), wio.. )) (B,b) Nwy;. 1 | B)V (i > 0N (wli—1],8(S, wp..i))) € Leave(s)))
— 35 € [0..1) 6((5’ s),wo..5y) = (T,t) Nwyj. ) = 7)

The case ¢+ = 0 was already discussed in the second paragraph. Further, if
i > 7'+ 1, then (a-c) show that j can be instantiated with j° + 1. Thus assume
that ¢ € [1..(j' 4+ 1)]. Further, since j' was chosen to be the smallest integer such
that (a-c) holds, we can simplify the expression we need to prove to:

(0((S, 8), wio..iy) # (B, b) V wpi.y = ) A {wli=1],8(S; wpo..i-1))) € Stay(s))

Note that second conjunct is direct consequence of (d). For the first conjunct,
we proceed by contradiction and assume that ¢ is the smallest integer such that:

(5(<S, S>,’w[0“i)) = <B,b> AW =]
Due to the already established second conjunct, we have (w[i—1], 6(S, wyo.;—1))) =
(p, B') € Stay(s) and §({B’, s),p) = (B,b). But since i — 1 € [0..5'], we have a
contradiction to (e).
(«<): We assume that w satisfies the right-hand side. We first consider the case

that the nested existential quantification is not true for any ¢« > 0. Thus for all
i > 0 it holds that:

(a) (wli],d(S,wp..+))) € Stay(s)
(b) 6(<Sas>7w[0z)) 7é <B,b> or wy; l;é ﬂ

Since w satisfies the right-hand side, it is easy to see that we have either
(S,s) # (B,b) or w = [. Hence it remains to show that w = (S, s) _weal, >0,

(T, t) (1), which we do by showing that w satisfies (2). From (a,b) we obtain:

(a’) For every (n, L) € Leave(s) we have either 6(5,wo.s)) # L or wi] 7é n.
(b’) Either wy1q. ] = B or for every (p, B') € Stay(s) such that 6((B’,s),p) =
(B, b) we have either 0(S, wy..5)) # B or w[i] # p.

We then apply the induction hypothesis (I.LH.2) to (a’,b’) and obtain that w
satisfies the disjunct of line (2).
We now consider the second case and assume that there is a j such that:

(a) 6((S,s), wyo..;)) = (T.1t)
(b) w[j“] ': T

Without loss of generality, we can assume j to be the smallest integer with
such a property. Further, since w satisfies the right-hand side, we have:

( ) Vi € [ ) < [2}75(57 w[Oz))> S StaY(s)
(d) Vi€ [0..5]. 6((S, ), wyo..i)) # (B, b) Vwp. ) =B
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If 7 = 0, then w immediately satisfies the left-hand side. Thus assume j >
0. Due to (c), we have that (o,T") = (w_1},0(S,wp.;—1))) € Stay(s) and
6((6(S,wpo..j—1)),8), wj—1)) = (T,t). Thus there exists a matching disjunct for
(o,T7") in line (1) and we know it is satisfied by w due the (a,b,d) and the
induction hypothesis (I.H.2).

Reachability formula 5
We want to prove the following equivalence:

w = (S,s) M* (T,) (7)

= iy, i > 0. 5((S, 8),wy0..ip)) = (T, t) Nwp, T
A (Fj1 € [0..41). (w[f1], 6(S, wyo..j,)) € Enter(s)))
A <w[i2],5(5,w[0“i2))> € Leave(s)
A (Vja € [0..max(i;—1,d3)].
3({S, s>’w[0~~jz)) # (B,b) v Wjs..] 7~ B)

(=): We assume that

holds and proceed by first constructing a witness for 72 and then one for ;.

(Fiz): Since w satisfies line (3), there must be a combined letter (o, L) € Leave(s)
such that w satisfies the corresponding disjunct. We apply to this disjunct the in-
duction hypothesis (I.LH.3) and instantiate the existential quantifier to iz (which
we intend to be the witness for Jis) with the following properties:

L. 0((S, 8), wpo..ip)) = (L, 5)

2. wlig] = a.and 0((S, s),wi0..55)) 7 (B, b) Vwp, ) B
3. vj? € [022) 6(<Sas>aw[0..j2)) 7é <Bab> vw[jz‘.] F& 6
4. VJQ S [022) <w[]2],5(s,’w[0]2))> S Stay(s)

Observe that due to (1,2) we have (wliz], §(S, wy..i,))) € Leave(s) and together
with (2,3) one can see that is is a sufficient witness for the Jis in the right-hand
side of the equation we want to prove. Note that property (4) is not useless and
will be of importance later.

(Fi1): Since w also satisfies lines (1,2), there must be a combined letter (o, T") €
Enter(¢) such that w satisfies the corresponding disjunct. We then apply the in-
duction hypothesis (I.H.1) to all terms of the matching conjunction in lines (1,2).
Since all reachability formulas share the same target configuration and formula,
we can instantiate all existential quantifiers to the same integer k by picking the
smallest instance for each existential quantifier. Let now k be this smallest non-
negative integer. We introduce the following two abbreviations 7" = 6((T”, -), o)
and R, = d((R,-),n) for some (n, R) € Enter(b). Note that we can leave out the
last state in the definition of T, since for all states ¢, p the transition relation
maps the the same successor configuration, i.e., §((I”,q),0) = §((I",p), o). Ana-
logously, for we omit it from R;. We now list all relevant properties of k derived
from applying the induction hypothesis:
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58, wp) =T
wlk] =0
. ’U}[k+1”] ): TN m} <CZ—‘7 t> (T)

0 o ot

. For all (n, R) €7Enter(b) and all £ € [0..k) at least one of the following
statements is true:
(a) 0(S,wp.0)) # R
(b) wlt] #n
(c) wieyr.) = Ry =" (B,b) (B)
LT )

We continue and apply the induction hypothesis to (7) and then obtain 4; (which
we intend to be the witness for 3i;) with the following properties (already shifted
to indices relative to w). Further, we can assume i; to be the smallest integer
with these properties.

9. (T, Wigt1..45,)) = (T, t) and wy;, ) = T
10. Vj € [(k—l— 1)..i1). (S(T/ w[;ﬁq“j)) 75 <B b> V wj. ] l;é I5)
11. Vj € [(k + 1)..41). (w[j],5((5(T’7J),w[k+1”j))> € Stay(t)

From (5,6,9) we obtain that §((S, s),wjo.4,)) = (T, t) and that wy;, | = 7 taking
care of the first line of the right-hand 81de of the equation. Further, by construc-
tion (wk], (S, wyo..k))) = (o, T) € Enter(t) and since k < i1, we now know that
the second line is satisfied by our witness for Ji;. Next, we inline the definition
of T" in (10) and obtain: Vj € [(k+1)..i1). 0({S, s), w(o..;)) # (B, b) Vwy;.| = B.
Thus in order to complete this direction of the proof 1t remains to show that:

Vj € [(iz+1).k]. 6((S, ), wp0..5)) # (B, b) Vwy) = B

If [(i2+1)..k] is the empty set, we are done. Thus assume that i, < k. We proceed
with a proof by contradiction and assume that there exists an index j € [i2+1..k]
such that §({S, s),wjo. ;) = (B,b) and wy; j = B. Due to (1) and (4), there must
be some j' € [iz..j—1] such that the combmed letter (n, R) = (w[j'], 6(S,w..;)))
is in Enter(b). Without loss of generality we can further assume that:

12. V5" € ['..5). (w[j"],0(S,w..j))) € Stay(b)

Note that j < k and since (8a) and (8b) cannot be true we can instantiate (8c)
to:

w1 Ry —M (B,b) (B)

B

We now apply the induction hypothesis to this and obtain an index £ > j' + 1
such that the following two statements hold (already with adjusted indices):

13. At least one of the following statements hold:
(a) 0((S,s),wio.00) = (T, t) Nwpe ) E 7
(b) £>j/—|—1/\< [E— 1] ((S s} wio..o— 1)> € Leave(b)
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Since j' < j and since we assumed that j is the smallest integer satisfying
5((S, s),wjo..5y) = (B,b) and wi;» ) = B, we can conclude with (14) that £ < j.
However, we have a contradiction between (13a), ¢ < j < k < i1, and i1 being the
smallest index reaching (7, t) and satisfying 7. Thus (13b) must hold. However,
since £ < j this contradicts (12). Thus there cannot be such a j and we can
conclude this direction.

(«<): Assume that w satisfies the left-hand side. Then there exists 41,2, j1 > 0,
further let 41,4 be the smallest integers and let j; be the largest integer such
that:

) 0((S, 8), wp.iy)) = (T’ 1)

wiiy.) T

J1 <11

(wlj1],8(S,wp. 5,))) € Enter(t)

(wliz], 0(S,wo..i,))) € Leave(s)

vj? € [O"max(il - 157’2)] 6(<Sv S>,U)[()“j2)) 7é <Bvb> N Wijy..] % ﬁ

Since i3 is the smallest integer with this property, we have (w[k], 6(S, wjo..x))) €
Stay(s) for all k£ € [0..i2—1]. Thus we can apply (I.H.3) to this and (e,f) to show
that w satisfies line (3) for (wliz], 6(S,wo..s,))) = (o, L) € Leave(s). In order to
show the disjunct of (1) and (2), we need to identify a suitable (o, T") € Enter(t).
We argue that (o,7") = (w[j1], (S, wy. ;,))) is a suitable choice.

We proceed by first showing that w satisfies line (1). Since j; is the largest
integer with such a property, we immediately get (w[k],d(S,wp..x))) € Stay(s)
for all k € [j1+1,41—1]. By applying (I.H.3) we get:

(a

(b)
()
(d)
(e)
(f)

Wy +1.] ': 5(<T/, '>7U) M <T7 t> (T)

)

We now apply (I.LH.1) and use (d) to establish that the first line is satisfied
by w. In order show that line (2) is satisfied it remains to show that for all
k € [0..51] and all (n, L) € Enter(b) either §((S,s),wyo..x)) # (n,L) or wy. ] &

weak
AX (0B, m) = (B.) (5) )
We proceed by contradiction. Assume that there is k < j; such that §((S, s),
w[OHk)) = <775L>7 w[k] =1 and Wik41..] ': 6(<R7>an) ﬁ <Bab> (ﬁ)) By
applying (I.H.4) and adjusting the indices we obtain:

Vi > k+ 1. ((8((S, ), w0 1)) = (T t) Awp j = 7)
V(i >k + 1A (wli—1],6(S,wp..i-1))) € Leave(b)))
— (Jj € [k +1..4). 6((S, s),wp.5)) = (B,b) Nwyj ) = B)

By instantiating this with (a,b) we get:
3j € [k + 1..d1). 6((S, 8), w._j)) = (B,b) ANwy; ) | B

However this contradicts (f).
Thus we can apply (I.LH.1) to establish that w satisfies (2). O
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Lemma 5. Let S, B, T be configurations of level m < n, and let s,b,t be states
in level m 4+ 1 (when m < n). Then fori > 1 it holds that:

- Sm T(X5), (S,s) m (T,t) (X3), (S,s) Ma (T,t) (X)) € X

— S T (1), (S, 8) ——— (T, t) (II) € II,
B B,

Proof. Observe first that there is no circularity in the definitions of the five
reachability formulas, even though they are defined by each other: Formula 2
is defined on top of formula 1, which is defined on top of formulas 3 and 5,
while formulas 3, 4, and 5 are defined with respect to reachability formulas over
configurations of a lower level.

Let ¢ > 1 be an arbitrary index. We prove the statement by induction on the
level m of the configurations S, B, T in the reachability formulas. We split the
proof to five cases corresponding to the five reachability formulas.

Reachability formula 1. Let § € II; and let 7 € X;. We proceed by an
induction on the the configuration level m.

(m = 0): There is only one configuration of level 0 and it is the empty configur-
ation. Thus S =T = B = (). Applying the definition we obtain:

0o 0 () = (AU

Note that -5 € X; and thus the whole formula (=8)Ur7 is also in X;.

(m = m+1): Let (S,s),(T,t),(B,b) € Q1 X -+ X Qp+1 be arbitrary configur-
ations of level m 4+ 1. Thus:

(5, 5) S (T1) (1) = (S,8) ——— (T,1) (1) V(S,9) T (T,8) (1)

) ) )

We now can use apply the induction hypothesis and obtain that the formula is
in Ez
Reachability formula 2. Let g8 € X; and let 7 € II;. Then by induction

weak

hypothesis S ~~~~ B () is in X; and thus S ~~~~ T'(7) is in II;.
TR BAL

Reachability formula 3. Let 8 € II; and let 7 € X;. Note that under this

assumption false, n, and pAXS belong to IT; and that c AXT belongs to X;. Thus

by applying the induction hypothesis we obtain that (S, s) =0 (T, t) (1) is

in X;. Since —f also belongs to X;, we obtain that (S,s) ——— (T,¢) (1) is
TBHMB).
from X;.

Reachability formula 4. Let 5§ € X; and let 7 € II;. Note that under this

assumption n and p AXp belong to X; and that false, -5, and o A X7 belong to

II;. We then apply again the induction hypothesis and obtain that (S, s) _werk >0,

(T,t) (7) and thus also (S, s) —="— (T,t) (1) belongs to II;.
TBHME)

)
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Reachability formula 5. Let 8 € II; and let 7 € X;. By an analogous argument
to the two preceding cases we obtain that the formulas in line (1) and (3) belong

weak

to X;. Further, note that by the induction hypothesis 7 A X(é((R, S, ——

)

(B, b) (ﬁ)) belongs to II; and thus the overall reachability formula 5 belongs to
;. O

A.4 Proofs from Section 4.3

Lemma 6. Consider a reset cascade A with n levels and up to n states in each
level, and a formula ( = S ~~~ T (1) with configurations S, B and T of A of

level i < n. Let d = max(depth(/3),depth(7)) and let | = max(|8|, |7|). Then:
(a) depth(¢) < d+3" and (b) |¢] <1-(10/Z2n)*

Proof. We first prove the upper bound on the depth of the formula and then
move on to the claim about the length of the formula.
Depth Analysis. We prove the claim by induction on the level i. For the base
case of ¢ = 0, the main reachability formula is just (-8)Ur, having D(0,d) =
d + 1, which is equal to d + 3°, as required. For the induction step of a general
level 7 > 0, we will first establish a bound on D(4, d) that is relative to D(i—1,d),
and then get from it an absolute bound, using the induction hypothesis.
Observe that D(Z, d) is bounded in Table 2 to the maximum between D3 (7, d)
and D5(7, d), while the bound on D5(i,d) is at least as on D3(4,d). Hence:
D(i,d) < Ds(i,d) D(i—1, max(1 + D3(i,d), 1 + D4(i,d)))
D(i—1,14+D(i—1,d+ 1))

IN A

Applying the induction hypothesis on D(i—1,d), we get an absolute bound:

D(i, d) D(i—1,1+ (d+1+3"1)

24+d+374371 < d+ 3

IN A

Length Analysis. We prove the claim by induction on the level ¢. For the base
case of ¢ = 0, the main reachability formula is just (-3)Ur, having L(0,1) =
2+ 21, which is indeed not larger than I- (10| X|?n)*". For the induction step of a
general level ¢ > 0, we will first establish a bound on L(i,1) relative to L(i—1,-),
and then apply the induction hypothesis to get an absolute bound.

Observe that L(¢,1) is bounded in Table 2 with respect to L3(7,-) and Ls(%, -),
and L3(7,1) is already bounded in Table 2 with respect to L(i—1, -). We simplify
the Ls bound, and substitute the bound on Lj, getting:
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Ls(i,1) < |2~ (La(i — 1,34 Ls(4,0)) + 2+
|Zn' =t (Li(d — 1, max(3 + Ls(i,1),3 + La(4,0))) + 1))+
L4 |t (14 L33, 3 + 1))

|2t (L — 1,3+ Ls(i, 1)) + 2+

|2t (Li(i — 1,3+ Ls(i, 1) + 1))+

L+ | X (14 L3(, 3+ 1))

| 21220 DL (i — 1,3 4 Ls(i, 1)+

|2 YL (66— 1,34 Ls(i,1))+

|Z|nVLg(i,3 + 1)+

|2|2n2(i—1)+

3|2 [ntY +1

4121220 DL (0 — 1,34 Ls(i, 1 + 3))

4121202000 (1 — 1,12 4 20 + 4] 22020 Y L (-1, 14:3))

IN

IN

IN

IN

We can now bound L(i,1) relative to L(i—1, -), getting:

L(z,1) < 1+ Ls(i, 1) + Ls(3,1)
< 4420 + 4| X2 YL (-1, 143)+
4121202000 (5 — 1,12 4 20 + 4| 22020V, (-1, 14-3))

< 5IZPR20 VL (6 — 1,12 4 20 + 4] 22020V L (i—1,14-3))

< 51212020V (1 — 1,5 22020 VL (i1, 143))

Applying the induction hypothesis on L(i—1, ), we get an absolute bound:

L(i,1) < 51212020V (i — 1, 5| 22n20 VL, (-1, 143))
< 5|ZPR20D (518220 1+ 3) (2|2 )Y (101 2)20)
< 25| =1 (1 + 3)(10] 2 2n) >+
< 1(10]Z2n)*

The last inequality clearly holds for i > 2 as the (1O\Z|2n)4i term becomes
very large. For i = 1, it also holds as the n*~1) term disappears and we get
25-102(1 + 3) < 10*n?, which holds even for [ = n = 1. O

A.5 Proofs from Section 4.4

Lemma 7. Consider a reset cascade A = (247, A1,..., A,) together with an

initial configuration L and some configuration C. Then for a word w € (2AP)w,
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the run of A on w starting in L visits C finitely often iff w satisfies the formula
Fin(C) ==L~~~ C)V L~~~ C(ﬂ(C’f\z»Qw C)). Furthermore, Fin(C) € Xs.

Proof. Observe that C is visited finitely often iff either C' is not visited at all,
which by Lemma 4 is formulated by — (L~~~ C) or there exists a last visit to C,

namely a visit to C after which there is no other visit to C', which is formulated
by L~~~ C(~(C ~2% C)). Note that by Lemma 5 we have L ~~s C,C ~Z

C € %1. Thus =L ~ws C,—C ~2% C € II; and then again by Lemma 5 we get
L~ C(—(C 22 ©)) € Xz Thus Fin(C) € Zs. 0

Theorem 2. FEvery counter-free deterministic w-regular automaton D over al-
phabet 247 with n states (and any acceptance condition) is equivalent to an LTL
formula ¢ over atomic propositions AP of double-exponential temporal-nesting
depth (in O(22")) and triple-exponential length (in 220(2")). If D is a looping-
Biichi, looping-coBriichi, weak, Biichi, coBiichi, or Muller automaton then ¢ is
respectively in the Iy, X1, Ay, Il5, Yo, or As syntactic fragment of LTL.

Proof. We complete the proof of the Theorem and give a complete analysis of
all six acceptance conditions:

— D is a Muller automaton: the overall formula ¢ is in As, since it is a Boolean
combination of Fin(C') formulas, which by Lemma 7 belong to X5.

— D is a coBiichi automaton: we construct the formula ¢ directly from the
coBiichi condition «, having a conjunction of Fin(C) formulas, over all con-
figurations C' that are mapped to states in «. As Fin(C) belongs to Xy, so
does ¢.

— D is a Biichi automaton: we can complement it, apply the above argument
over the resulting coBiichi automaton, and negate the resulting formula to
obtain a formula from I75.

— D is a looping-coBiichi automaton: Let s € @ be the unique sink state that
all accepting runs end up in, and let S be the set of configurations mapped
to 5. We then define ¢ as \/, 4 ~~~ C. Note that ¢ belongs to X since

every disjunct belongs to Y7 due to Lemma 5.

— D is a looping-Biichi automaton: the dual of the previous argument.

— D is a weak automaton: Let G C @ be an accepting SCC of D and G' C Q
be all states that are reachable from G, but are not in G. Let H and H' be
the set of configurations that are mapped to G and G’, respectively. Then
by Lemma 4, we have that (\/ocpy b~ C) A (Agriepr 7L ~~ C') exactly

captures all words that are accepted by eventually ending up in G. The
overall formula ¢ is then the disjunction of these formulas constructed for
each accepting SCC of D. The membership in A; then follows immediately
from Lemma 5. O
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