
Chapter 9
What is the Church-Turing Thesis?

Udi Boker and Nachum Dershowitz

[Answer:] Rosser and its inventor proved that its beta-reduction
satisfies the diamond property, and Kleene (pron. clean-ee)
proved that it was equivalent to his partial recursive functions.
The previous result combined with a similar one with the Turing
Machine, led to the Church-Turing thesis.
[Question: “What is …?”]

—Quizbowl Tournament (2004)

Abstract We aim to put some order to the multiple interpretations of the Church-
Turing Thesis and to the different approaches taken to prove or disprove it.

9.1 Introduction

The notions of algorithm and computability as formal subjects of mathematical
reasoning gained prominence in the twentieth century with the advent of symbolic
logic and the discovery of inherent limitations to formal deductive reasoning. The
most popular formal model of computation is due to Alan Turing. The claim that
computation paradigms such as Turing’s capture the intuitive notion of algorithmic
computation, stated in the form of a thesis, is roughly as follows:

Church-Turing Thesis: The results of every effective computation can be
attained by some Turing machine, and vice-versa.

U. Boker (B)
School of Computer Science, Reichman University, Herzliya, Israel
e-mail: udiboker@idc.ac.il

N. Dershowitz
School of Computer Science, Tel Aviv University, Ramat Aviv, Israel
e-mail: nachum@tau.ac.il

© Springer Nature Switzerland AG 2022
F. Ferreira et al. (eds.), Axiomatic Thinking II,
https://doi.org/10.1007/978-3-030-77799-9_9

199

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77799-9_9&domain=pdf
mailto:udiboker@idc.ac.il
mailto:nachum@tau.ac.il
https://doi.org/10.1007/978-3-030-77799-9_9


200 U. Boker and N. Dershowitz

Any other standard full-fledged computational paradigm—such as the recursive
functions, the lambda calculus, countermachines, the randomaccessmemory (RAM)
model, or most programming languages—could be substituted here for “Turing
machine”. Turing’s model has the advantage, however, of appealing only to the
most basic of actions, namely reading, writing, testing, and moving, as does Emil
Post’s essentially identical and contemporaneous notion of computation [1]. (Other
paradigms may model other aspects of computation better, such as recursion with
recursive functions [2] or combinatory logic for composition [3].)

In what follows, we analyse different interpretations that this thesis has been given
over the years and what it might mean to prove or disprove it.

Historically, the thesis was first formulated in the thirties. It started with a sug-
gestion of Alonzo Church, based on the lambda calculus, in 1936: “The purpose of
the present paper is to propose a definition of effective calculability” [4]. This was
followed by the introduction of Turing machines, as a basic model of computability,
in the same year [5]. Shortly thereafter, the claim that these two proposals both cap-
tured the intended notion was stated as a “thesis” by Stephen Kleene [6]. Church,
Turing, and Kleene had their own original interpretations of the claim, which were
not identical. Over time, their positions in this regard developed [7, 8]. Moreover,
the understanding of the thesis, as expressed in the scientific literature, has continued
to evolve.

Our intention here is not to get into the historical question of how exactly Church
or Turing themselves interpreted the thesis, but rather to analyse its different inter-
pretations today. For historical aspects of the thesis, one can consult [8, 9].

TheChurch-TuringThesis itself is extensional, speakingofwhat canbe effectively
computed, whereas the claims for and against it are intensional, arguing about how a
computation can be accomplished. We examine first the extensional claim, looking
at what type of entities are meant to be computed.

The Extended Church-Turing Thesis [10], otherwise known as the Invariance
Thesis [11], is more presumptuous. It asserts, not only that there is a Turing machine
corresponding to each effective algorithm, but that there is one that is no more
than polynomially slower (counting atomic actions) than any other effective means
of performing that computation. We do not consider this extended thesis here and
concentrate on the more fundamental computability question.

9.2 What Is Computed?

The thesis asserts that there exists some Turing machine that has the same outcomes
as any particular effective calculation.

Yet, there are different views as to what it is exactly that a Turing machine
computes.



9 What is the Church-Turing Thesis? 201

What Does a Turing Machine Compute?

The input of an ordinary Turing machine is a finite tape consisting of a sequence
of cells, each containing one letter taken from a finite alphabet �. The tape extends
itself with blanks whenever the machine attempts to go beyond its current far end.
The computation may also involve finitely many additional symbols, not in�. If and
when the computation halts, the same tape contains the output—perhaps followed by
trailing blanks that are not considered part of the output. By this very standard view,
a Turing machine M computes a partial function fM : �∗ ⇀ �∗ over finite strings,
partial because some machines do not halt for some inputs. This is the version of
Turing machine, out of many, that is most relevant to the intent of the original thesis.

All the same, different views are in place, even in Turing’s classic 1936 paper.
There,Turing analysed the computability of real numbers bymeansof hismachines—
using their infinite expansions to represent them:

Some of the symbols written down will form the sequence of figures which is the decimal
of the real number…. The others are just rough notes to “assist the memory”. It will only be
these rough notes which will be liable to erasure. [5]

From this point of view, a machine M runs forever, generating an infinite string. If
the content of every cell of the tape eventually stabilizes, then the infinite sequence
of stabilized cell values is deemed its output. Accordingly, such a machine computes
a partial function fM : �∗ ⇀ �ω, where �ω is the set of infinite strings (padded
with infinitely many blanks, when necessary).

As each step in the run of a Turing machine can alter a symbol written in some
previous step, the output of an infinite run can be viewed, not as one possibly infinite
string in the limit—at the “end” of the computation, but rather as a sequence of
finite strings, one per step. By this view, the machine computes a total function
fM : �∗ → (�∗)ω.
Another issue is what the tape contents actually represent.
The tape is often imagined to be infinite, either on one end or on both. Thus, it

may be thought of as an infinite string—perhaps with only finitely many positions
nonblank initially. According to this view, a finite computation of a Turing machine
M is a partial function fM : �ω ⇀ �ω over infinite strings, while an infinite com-
putation is a partial function fM : �ω ⇀ �ω or a total function fM : �ω → (�ω)ω,
depending on whether one looks only for stable outputs or at the sequence of tapes.

Aside from the basic version of a Turingmachinewith a single tape, many variants
of Turing machines have been considered in the literature, having multiple tapes
and/or multiple heads with varying levels of ability to read and write. By some
views [12], aTuringmachinemaybe considered to compute varying sorts of functions
over finite and infinite strings, as long as the basic model at hand preserves the atomic
operations and core functionality of a Turing machine.

Nevertheless, there is a significant difference between the view that a Turing
machine computes a partial function over finite strings and some of the other views
that involve infinite entities. In the former, the computation producing an output is
finite, whereas in the latter, the computation is expected to go on forever. Our interest
here is in finite but unbounded computations alone.



202 U. Boker and N. Dershowitz

What Entity Does an Effective Computation Compute?

A quick answer might be “a function over strings”, since a Turing machine computes
with strings, and we aim at comparing something to it. However, as is well known,
Turing machines are computationally equivalent to many other computational mod-
els, such as the recursive functions, the lambda calculus, and modern programming
languages, all of which compute functions over different domains, such as natu-
ral numbers for the recursive functions and lambda terms for the lambda calculus.
Accordingly, the thesis may—and sometimes is—stated with respect to one of these
formal models of computation rather than in terms of Turing machines.

Yet, how can one compare computational models that operate over different
domains? The original approach of the 1930s was to consider some “natural map-
pings” between these domains. Amore thorough approach is taken in [13], analysing
how the choice ofmapping between domains can influence the comparison of compu-
tational models. Following the latter approach to comparing computational power,
it is shown in [14] that “Turing computability” can be formally extended from a
partial unary function over strings to a partial function over an arbitrary structured
countable domain by using any structure-preserving injective mapping between this
countable domain and the natural numbers. It is guaranteed that regardless of the
choice of such a mapping, it cannot influence the comparison result.

A formal answer, then, is that an effective computation is a partial function over an
arbitrary structured countable domain, and that the thesis can be stated with respect
to functions over natural numbers.

A different answer is that an effective computation can be any entity, as long as we
find the computation effective, regardless of whether or not the domain is structured.
Under this interpretation, if we agree on the existence of such an effective computa-
tion, we should either look into an appropriatemethod of comparing Turingmachines
to such effective computations, or, if we claim that they are incomparable, we must
simply admit that the thesis is wrong. This approach can be further classified into
two variants: (i) considering only functions, yet over domains that are uncountable
or unstructured; and (ii) considering entities that are not functions.

Regarding a function over an uncountable or unstructured domain, one may argue
whether it can at all be effective.Theprevailingview is that it cannot—anunstructured
domain is just an arbitrary set with no differentiation between its elements, so a
function over it has littlemeaning.As for an uncountable domain, one should consider
the question of whether the thesis involves a [human] agent (as elaborated on in the
next section). If it does, the dominant view is that the agent’s ability to distinguish
between different input or output elements is limited to a countable domain [15, 16].

As for a computation that is not a function, a common example in the literature is
that of interactive computation. It has been claimed that an interactive computation,
even a sequential one, does not compute a function and is therefore not Turing com-
putable in the above sense [17, 18].1 There is, however, a different view of interactive

1 Peter Wegner and Dina Goldin asserted that the Church-Turing Thesis should be interpreted with
respect to functions over natural numbers [17]. Yet, if one considers it in the more general form,
they claim that he/she must admit it wrong due to the actuality of interactive computations. All this



9 What is the Church-Turing Thesis? 203

computations, under which they are comparable to Turing machines [12]. By this
view, the claim of [17, 20] is a syntactic one, not much different from saying that the
recursive functions are not Turing computable because they operate over numbers
and not over strings. A sequential interactive computation is considered under this
view as nothing more than a function over finite strings—an interactive computation
I computes in each iteration a function f I : �∗ → �∗, where the input is the string
produced by the previous iteration, concatenated with a fresh environment input. The
input string would also contain some information on the inner status of the comput-
ing device. As f should be the same function for all iterations, we may simply ask
whether f is Turing computable (cf. [19, Defs. 14–15]). Turing already considered
this setting in his classic 1936 paper, yet concentrated on “automatic machines”, as
opposed to nondeterministic machines, or possibly interactive machines, which he
termed “choice machines”:

For some purposes we might use machines (choice machines or c-machines) whose motion
is only partially determined by the configuration…. When such a machine reaches one of
these ambiguous configurations, it cannot go on until some arbitrary choice has been made
by an external operator. [5]

Turning to choice machines, a natural question is what about random computa-
tions that do not always return the same output for the same input, and thus do not
compute a function, yet are guaranteed to return the correct answer with arbitrarily
high probability. A prevailing answer is that such a computation may be regarded
as computing a function, with the most likely outcome as its value. See more on
randomness in Sect. 9.6.2.

The Bottom Line

The dominant view is that the core question underlying the thesis concerns functions
of natural numbers, or—more precisely—functions over (string) representations of
numbers. Computations of different entities are to be considered, by this view, as
built over numerical encodings. This makes the extensional claim clear and simple,
allowing us to concentrate on the core issue of how can an effective computation be
performed. By this view, we may rephrase the Church-Turing Thesis as follows:

Church-Turing Thesis: The partial functions over the natural numbers that
can be effectively computed are exactly the functions that can be computed by
Turing machines.

means is that the original thesis needs to be adapted to refer to the nature of non-function-computing
uses of computation. See, for example, [19].



204 U. Boker and N. Dershowitz

9.3 How Is It Computed?

There are conflicting views as to what computational means can participate in an
effective computation. A first question is who/what makes the computation: Is it
a human being or a machine? The next questions correlate between the two. If a
human performs the computation, what physical entities can he/she employ? And if
the computation is done by a machine, must a human be able to provide the input to
the function and also understand its output?

The dominant view is that a human (or some other intelligent agent) should be able
to use the computation for her own purposes. A natural phenomenon that computes
some function over entities that we, qua humans, cannot figure out is possibly an
interesting issue to investigate in physics, but it is somewhat off the Church-Turing
track [15, 16]. (It relatesmore towhat is sometimes calledDeutsch’s Principle, which
we discuss briefly in Sect. 9.6.2.2. As opposed to the Physical Computational Thesis
[see below], which demands that a human be able to communicate and understand
the input and output of a computation, this principle relates to physics alone, its
capacities and limitations, without getting into what humans might be able to derive
from such computations.) Themain question here is whether the human performs the
computation with his/her own “bare hands” or with the possible aid of some physical
machinery.

The classic minimal means for a human to use in a computation is (unlimited)
paper and pencil. Turing, in his classic 1936 paper, considered these quotidian means
when providing arguments in favour of Turing machines.

When allowing the usage of additional machinery, there are obviously debates
over what kind of machinery should be allowed. This argument is therefore related
to the intensional question of howa computation is to be performed. Themore general
interpretation permits arbitrary physical devices as long as their construction accords
with modern physics. We elaborate on physical aspects in Sect. 9.6.

The next issue is how creative can the human participant be. Undoubtedly, no
limits are put on the ingenuity and creativity of the human who designs a solution.
On the other hand, when performing the computation, his or her actions should be
systematic. The prevailing view is that, in the course of performing the computation,
the human should follow definite, unambiguous, predefined instructions, and avoid
any appeal to creativity [21]. When considering the question of whether the human
mind is limited to Turing computability, the creative aspect of human activity also
comes into play, a subject we will touch on later.

The Bottom Line

Both interpretations, that of only having paper and pencil and that of having arbitrary
machinery at one’s disposal, are widely considered in the literature. Both are referred
to as the “Church-Turing Thesis” and sometimes under other names, too. We shall
distinguish between the mathematical and physical theses, respectively.2 Although

2 There are numerous other names for the various versions of the thesis in the literature. Even the
terms “mathematical” and “physical” have different connotations for different authors.



9 What is the Church-Turing Thesis? 205

we use the adjectives “mathematical” and “physical”, the theses do not speak of
the limitations of mathematics and physics per se, but rather of the capabilities of
humans who use those resources for performing computations.

Mathematical Computational Thesis: The partial functions over the natural
numbers whose computations can be effectively performed by a human who
systematically uses only paper and pencil of finite but unlimited quantity and
who has finite but unlimited time are exactly the Turing-computable numerical
functions.

Physical Computational Thesis: The partial functions over the natural num-
bers whose computations can be effectively performed by a human who sys-
tematically uses any physical device of finite but unlimited resources, includ-
ing finite but unlimited time, are exactly the Turing-computable numerical
functions.

We are taking a purely anthropocentric point of view:What can a human compute
systematically, following predefined rules, be it with only the most basic of tools
(pencil and paper), or with arbitrarily elaborate physically feasible devices? What it
may be that natural systems or fabricated apparatuses can calculate for their own,
internal consumption is not the issue under inquiry, to the extent that they do not
contribute to the repertoire of functions available to us humans.

We elaborate on the mathematical thesis in Sect. 9.5 and on the physical thesis in
Sect. 9.6.

9.4 What Can Be Proved?

To Prove or Not to Prove? This is the Philosophical Question

There is a contentious philosophical debate on whether there is a sense in trying
to prove the thesis. (See, for example, the arguments in [22, 23] and the references
therein.) In a nutshell, the dominant claims against a proof assert that an intuitive
notion, such as effectiveness, cannot be proved equal to a formal notion, such as
Turing computability. No matter what proof you provide, it is based on some basic
assumptions. Therefore, the “proof” only transforms the Church-Turing Thesis to
a thesis claiming that one’s assumptions properly capture the essence of effective
computation. On the other hand, claims in favour of provability assert that every
proof takes some “first principles” as axioms, or else nothing is provable. Hence,
agreeing on first principles for effective computability, on top of which a proof of



206 U. Boker and N. Dershowitz

the thesis is considered, is as reasonable as agreeing on first principles to logic and
mathematics, on top of which every mathematical proof is considered. One can still
argue about how close the principles are to the intended intuitive notions, just as one
may speculate whether the axioms of ZFC properly capture the full essence of a set.

In parallel with the philosophical debate on whether or not a proof of the thesis
is plausible, there is a rich literature on arguments for and against the thesis, as well
as various concrete proofs of the thesis within specific formal settings. We elaborate
on some of them in Sects. 9.5 and 9.6.

9.4.1 Against Provability

The view that the thesis cannot be proved harks back to Church and Kleene:

This definition is thought to be justified by the considerations which follow, so far as positive
justification can ever be obtained for the selection of a formal definition to correspond to an
intuitive notion. [4, p. 356]

Since our original notion of effective calculability of a function (or of effective decidability
of a predicate) is somewhat vague intuitive one, the thesis cannot be proved”. [24, p. 317]

Likewise, Janet Folina claims, “There is a good deal of convincing evidence that
CT [the Church-Turing thesis] is true”, yet, “It is simply not possible to prove that
an informal, intuitive, notion has a single precise (formal or axiomatic) articulation”
[22, p. 321].

László Kalmár further claims that, not only doesn’t the thesis properly capture
the intuitive notion of effectiveness, but we must not try to mathematically capture
it:

There are pre-mathematical concepts which must remain pre-mathematical ones, for they
cannot permit any restriction imposed by an exact mathematical definition. Among these
belong, I am convinced, such concepts as that of effective calculability, or of solvability,
or of provability by arbitrary correct means, the extension of which cannot cease to change
during the development of Mathematics. [25, p. 79]

As for Turing, he also considered computability to be an intuitive notion that
cannot be defined mathematically, though he did claim that the right viewpoint to
the question is via analysing the possible processes of a computation:

No attempt has yet been made to show that the “computable” numbers include all numbers
which would naturally be regarded as computable. All arguments which can be given are
bound to be, fundamentally, appeals to intuition, and for this reason rather unsatisfactory
mathematically. The real question at issue is “What are the possible processes which can be
carried out in computing a number?” [5, p. 249]



9 What is the Church-Turing Thesis? 207

9.4.2 In Favour of Provability

Kurt Gödel has been reported (by Church in a letter to Kleene cited by Davis in [26])
to have thought that

It might be possible … to state a set of axioms which would embody the generally accepted
properties of [effective calculability], and to do something on that basis.

Joe Shoenfield similarly asserted that:

It may seem that it is impossible to give a proof of Church’s Thesis. However, this is not
necessarily the case…. In other words, we can write down some axioms about computable
functions which most people would agree are evidently true. It might be possible to prove
Church’s Thesis from such axioms. [27, p. 26]

The late Elliott Mendelson further claimed:

It is completely unwarranted to say that CT is unprovable just because it states an equiv-
alence between a vague, imprecise notion (effective computable function) and a precise
mathematical notion (partial recursive function). [28, p. 232]

He asserts that a nonmathematical notion can indeed be fully matched with a math-
ematical one, as for example, is the case with what he calls Peano’s thesis [28, p.
230], which provides an exact mathematical definition in terms of sets of ordered
pairs for the intuitive notion of a function.

Mendelson (and Gandy [29] before him) even asserts that Turing’s arguments in
favour of the thesis (see Sect. 9.5) are in fact a proof for it:

The fact that it is not a proof in ZF or some other axiomatic system is no drawback; it just
shows that there is more to mathematics than appears in ZF. [28, p. 233]

Shapiro supports Mendelson’s view, claiming, “We can and do prove theses a lot like
CT” [23]. (For a lengthy discussion of the issues, see [30].)

Mendelson further claims that the concepts of effectiveness and Turing com-
putability (recursiveness) are equally vague:

The concepts and assumptions that support the notion of partial-recursive function are, in an
essentialway, no less vague and imprecise than the notion of effectively computable function;
the former are just more familiar and are part of a respectable theory with connections to
other parts of logic and mathematics.

He compares it to the case of functions and sets:

Functions are defined in terms of sets, but the concept of set is no clearer than that of function.

In 2000, Harvey Friedman predicted that

There will be [in the 21st century] an unexpected striking discovery that any model of
computation satisfying certain remarkably weak conditions must stay within the recursive
sets and functions, thus providing a dramatic “proof” of Church’s Thesis. [31]



208 U. Boker and N. Dershowitz

9.4.3 What Does It Mean to Disprove the Thesis?

As with the positive direction of proving the thesis, there are also philosophical
debates on whether there is a sense in trying to disprove it. If we deny the ability to
formalize an intuitive notion, neither can we prove that something is included in it.

Yet, the possibly more common view is that there is a significant difference
between the essence of proving and disproving the thesis. Indeed, once an effec-
tive computation scheme that is stronger than Turing machines is introduced, we
might agree on its effectiveness and recognize the falsehood of the thesis.

Saul Kripke, for example, writes,

That the recursive or Turing-computable functions are all in fact effectively calculable, can
I think easily be established simply on the basis of an intuitive notion of calculability. No
axiomatization is required, just a direct argument. And the argument should be regarded as
a rigorous intuitive proof of its result. [32, p. 78]

It is harder, no doubt—some would say impossibly harder, to prove that all effec-
tive means are included in a proposed formalism than that some particular formally
defined function is effectively computable.

Primitive recursion, for instance, was considered at some point as a candidate
formalism for characterizing effective computability, yet once general recursion was
introduced, it was widely agreed to be effective and to exceed the computational
power of primitive recursion.3 Quoting Henk Barendregt [34]:

One may wonder why doubting Church’s Thesis is not a completely academic question.
This becomes clear by realizing that [Skolem in 1923] had introduced the class of primitive
recursive functions that for some time was thought to coincide with that of the intuitively
computable ones. But then [Ackermann in 1928] showed that there is a function that is
intuitively computable but not primitive recursive.

9.5 The Mathematical Thesis

What are the “Rules of the Game”?

The exact rules of the game are, of course, vague, as is the abstract notion of effec-
tiveness. Still, some rules are clear enough. Computation is discrete, that is, done in
steps, and the number of steps should be finite, though it may be unbounded. The
computational process has a finite description, independent of the specific inputs. The
space and time made available for the purpose of the computation are accordingly
unbounded but finite. Computation is generally considered to be symbolic. “There
is no calculation without representation” [35] (see [36]). That is, the data with which
oneworks consist of finite symbolic configurations, where the symbols (or labels) are

3 In [13, 33] it is shown that while strict containment of function sets is in general not enough to
infer the presence of extra computational power, general recursion is indeed more powerful than
primitive recursion, even under rigorous definitions of power comparison.



9 What is the Church-Turing Thesis? 209

drawn from some finite set given in advance. It bears stressing that computation of a
numerical or string function may involve additional domains, which need, likewise,
to be represented symbolically.

This ideal, unbounded, nature of the computation—of both a Turing machine
and an “effective computation”—is intuitively in tension with the effectivity of the
computation. Indeed, in contrast to the common claim that Turing computablity is
effective, there are counterclaims that even Turing machines are not effective, men-
tioned below. Yet, “effective” was never meant in the sense of reasonable or practical
demands on time, or space, or other resources. This is the reason for the rich field
of complexity theory, and for the distinction between computability and complexity.
The latter relates to the extended Church-Turing thesis, while we concentrate on the
former.

The Empirical Evidence

Since the seminal works of Church, Turing, Gödel, Herbrand, Kleene, and Post
in the thirties, defining general computational models, and until current days, all
of the general-purpose models were shown to have exactly the same computational
power given finite and unbounded time andmemory. Among thesemodels are Turing
machines, the recursive functions, lambda calculus, Post canonical systems, modern
programming languages, and many others. This empirical fact, having so many dif-
ferent views of computation, all leading to the same set of functions, gave significant
confidence in the validity of the Church-Turing thesis. As Hartley Rogers writes in
his classic text in support of the thesis:

The proposed characterizations of Turing and of Kleene, as well as those of Church, Post,
Markov, and certain others, were all shown to be equivalent. [37, pp. 18–19]

9.5.1 Non-empirical Arguments in Favour of the Thesis

Next, we enumerate some of the efforts made to justify or prove the thesis on a
non-empirical basis, starting with Church’s and Turing’s original ones.

Church’s Arguments

Church, in his classic paper, provided two arguments in favour of identifying effec-
tiveness with λ-definability or general recursiveness. The first concerns an effective
algorithm and the second an effective logical proof:

Nomore general definition of effective calculability than that proposed above can be obtained
by either of two methods which naturally suggest themselves (1) by defining a function to
be effectively calculable if there exists an algorithm for the calculation of its values (2) by
defining a function F (of one positive integer) to be effectively calculable if, for every positive
integer m, there exists a positive integer n such that F(m) = n is a provable theorem. [4,
p. 358]

In the same paper, it is shown that λ-definability and general recursiveness are equiv-
alent in the sense that each can simulate computation in the other sense.



210 U. Boker and N. Dershowitz

In the first argument for comprehensiveness of the definition of effectiveness,
Church considers the following:

• An algorithm consists of a finite sequence of expressions: “For example, in the
case of a function F of one positive integer, an algorithm consists in a method by
which, given any positive integer n, a sequence of expressions (in some notation)
En1, En2, · · · , Enrn , can be obtained”.

• Each step of the algorithm should be recursive: “We take the effective calculability
of G and H to mean recursiveness” [4, p. 357], where G and H are functions over
natural numbers that represent the algorithm’s step computationwhen representing
the algorithm’s expressions with their Gödel numbers.

Under these assumptions, “the recursiveness (λ-definability) of F follows by a
straightforward argument” [4, p. 357]. Church further claims:

If this interpretation or some similar one is not allowed, it is difficult to see how the notion
of an algorithm can be given any exact meaning at all. [4, p. 357]

Overall, the logic community was not at all convinced by Church’s arguments, as
demonstrated by Gödel’s response (reported by Kleene):

According to a November 29, 1935, letter from Church to me, “Gödel regarded as thor-
oughly unsatisfactory” Church’s proposal to use λ-definability as a definition of effective
calculability. [38]

In the second argument, Church considers a proof to be in some “symbolic logic,
which contains a symbol …for equality”, starting with “formal axioms” and pro-
ceeding by “the rules of procedure”. Analogously to the first argument, he assumes
that “each rule of procedure must be a recursive operation”, and that “the com-
plete set of formal axioms must be recursively enumerable” [4, p. 357]. Under these
assumptions, the recursiveness of the entire proof directly follows.

Themain claim against this argument is that it’s circular, demanding that the basic
steps of the computation be themselves recursive (e.g. [27, 39, §6.5]). All the same,
similar arguments were given by Turing (in addition to other arguments), and they
have been further developed by Kripke [32]. See below.

Turing’s Arguments

In his classic paper, Turing gave three different arguments in favour of identifying
effective computability with computability via Turing machines. The first builds on
the limitations of a human being working in a rigorous, bureaucratic way. His second
argument concerns the equivalence of Turing computability and “Hilbert functional
calculus”, and resembles Church’s arguments, namely, “The steps of any effective
procedure (governing proofs in a system of symbolic logic) must be recursive” [39].
This has been further developed by Kripke to reduce the mathematical thesis to a
thesis about first-order logic (see below). The third provides “empirical evidence”
that large classes of real numbers are Turing computable.



9 What is the Church-Turing Thesis? 211

We elaborate on Turing’s first argument. It builds on the following limitations of
a [human] computer [5, pp. 249–250]:

• “Computing is normally done by writing certain symbols on paper.”
• “The two-dimensional character of paper is no essential of computation. I assume
then that the computation is carried out on one-dimensional paper, i.e. on a tape
divided into squares.”

• “The number of symbols which may be printed is finite. If we were to allow an
infinity of symbols, then there would be symbols differing to an arbitrarily small
extent.”

• “The behaviour of the computer at any moment is determined by the symbols
which he is observing, and his ‘state of mind’ at that moment.”

• “There is a bound B to the number of symbols or squares which the computer can
observe at one moment.”

• “The number of states of mind which need be taken into account is finite. The
reasons for this are of the same character as those which restrict the number
of symbols. If we admitted an infinity of states of mind, some of them will be
‘arbitrarily close’ and will be confused.”

• “In a simple operation not more than one symbol is altered…. The squares whose
symbols are changed are always ‘observed’ squares.”

• “The new observed squares must be immediately recognisable by the computer….
They can only be squares whose distance from the closest of the immediately
previously observed squares does not exceed a certain fixed amount.”

Turing’s argument is considered by many to be a most convincing one, some
even going so far as to view it as an actual proof. For example, Robin Gandy called
it “Turing’s proof”, and said, “The proof is quite as rigorous as many accepted
mathematical proofs …” [29, p. 82], and likewise Mendelson [28] and Shapiro [23].

Church, reviewingTuring’s classic paper,was convinced by the arguments: “Com-
putability by a Turingmachine…has the advantage of making the identification with
effectiveness in the ordinary (not explicitly defined) sense evident immediately—i.e.
without the necessity of proving preliminary theorems” [40, p. 43].

Gödel adopted Turing’s argument, saying [41, p. 203], “The resulting definition
of the concept of mechanical by the sharp concept of ‘performable by a Turing
machine’ is both correct and unique.” In later years, he did, however, raise doubts
about Turing’s arguments:

What Turing disregards completely is the fact that mind, in its use, is not static, but constantly
developing…. Although at each stage the number and precision of the abstract terms at our
disposal may be finite, both (and, therefore, also Turing’s number of distinguishable states of
mind) may converge toward infinity in the course of the application of the procedure. [42,
p. 306]

The common response to this objection of Gödel is that an algorithm should be
completely given in advance. Kleene wrote:



212 U. Boker and N. Dershowitz

Thus algorithms have been procedures that mathematicians can describe completely to one
another in advance of their application for various choices of the arguments. How could
someone describe completely to me in a finite interview a process for finding the values of a
number-theoretic function, the execution of which process for various arguments would be
keyed to more than the finite subset of our mental states that would have developed by the
end of the interview, though the total number of our mental states might converge to infinity
if we were immortal? [21, p. 50]

Wang notes that

Gödel realizes that his incompleteness theorem does not by itself imply that the human mind
surpasses all machines. [43]

There is no reason why the number of states of the mind should not converge to infinity in
the course of its development. [44, pp. 325–326]

In other words, human mathematical reasoning—as opposed to algorithmic reason-
ing, by human ormachine—need not be held to the requirement that states ofmind be
bounded [45]. The assertion that humans or humankind cannot outperform Turing
machines even in such non-algorithmic ways has been referred to as the “Non-
mathematical Church-Turing Thesis” [46], to avoid confusion with the algorithmic,
mathematical one we are discussing.

Another criticism of Turing’s arguments, or more accurately a sort of request for
further development, is that they are not formal enough. The quest is for a set of
postulates that define the limitations of effective computability along with a proof
that under these limitations no computation exceeds Turing computability. There are
several works along this line, and we elaborate on some of them next.

Kripke’s Arguments

Saul Kripke reduces the Church-Turing Thesis to “Hilbert’s Thesis” (asMartin Davis
called it [47, p. 41]; [48]), namely, “The steps of any mathematical argument can be
given in a language based on first-order logic (with identity)” [32, p. 81]. He asserts,
as did others before him,4 that all “computation is a special form of a mathematical
argument”, and that “computation is a deductive argument from a finite number of
instructions…albeit one of a very specialized form” [32, p. 80].

Thus, by Hilbert’s Thesis, the premises of the computation as well as its steps
can be expressed in first-order logic. This assumption in hand, Kripke obtains, as a
corollary of Gödel’s completeness theorem for first-order logic (with identity), the
First-Order Algorithm Theorem, as he calls it:

Any algorithm whose steps are meaningfully expressed in a first-order language, the con-
clusion of the computation does indeed follow from the premises. [50, at 1:18]

Since every first-order proof is Turing computable, as already shown by Turing, a
proof of the thesis directly follows. “What [Turing] gives as argument 2 in his paper
is essentially that any first-order algorithm can be computed by a Turing machine,
as expressed in my own terminology” [50, at 1:19]. The first-order inference system
works with terms and formulas to derive the output of the algorithm.

4 Sieg [49] in explaining Church [4]: “Calculability is explicated by that of derivability in a logic.”



9 What is the Church-Turing Thesis? 213

It should be remarked that Kripke further claims that the proof also holds with
respect tomachine computations, as their computation stepsmust follow somededuc-
tive rules:

Any machine—think of it as an abstract object, it is a program. Do the steps in the program
follow from the initial instructions in the program as given or don’t they? And can they be
expressed in a final conventional mathematical language formalized in first order logic or
can’t they? If the answer is no, I don’t regard it as a computation at all. If the answer is yes,
the theorem that I just stated is enough to give an affirmative answer that the function that
comes out of it must be Turing computable. [50, at 1:27]

An objection to Kripke’s argument, for example by Michael Rabin [50, at 1:54],
is that it is circular: A computation can be viewed as a logical proof, and the proof
should be susceptible to mechanical verification. As Kripke puts it: “Granted that the
proof relation of such a [formal logical] system is recursive (computable)” [32, p. 81].
Yet, disbelieving the thesis, there might be a stronger logic that can be mechanically
checked (by an effective machine stronger than a Turing machine). Rabin would
be equally surprised if a machine stronger than Turing’s is found or if a notion of
computation not expressible in first-order logic is found.

Sieg’s Arguments

Gandy [51], Wilfried Sieg [52], and Robert Soare [9] divide Turing’s first argument
into a philosophical part, in which there are assumptions on what an idealized human
(a “computor”with an o) can rigorously dowith paper and pencil, and amathematical
part, in which it is proved that under the above philosophical assumptions, every
computation is Turing computable.

The assumptions on the computor are reduced by Sieg to principles of bounded-
ness and locality:

The constraints Turing imposes on symbolic processes derive from his central goal of isolat-
ing the most basic steps of computations, that is, steps that need not be further subdivided.
This objective leads to the normative demand that the configurations, which are directly
operated on, must be immediately recognizable by the computor. This demand and the evi-
dent limitation of the computor’s sensory apparatus motivate most convincingly two central
restrictive conditions.

(Boundedness) A computor can immediately recognize only a bounded number of configu-
rations.

(Locality) A computor can change only immediately recognizable configurations. [52]

Sieg’s formal axioms aim at capturing these informal assumptions.

The axioms are formulated for discrete dynamical systems and capture the above general
ideas precisely; they should be viewed as determining classes of “algebraic structures” of
which particular models of computations are instantiations. [52]

Sieg considers a computation to be a state transition system, in which states (as
in [51]) are finite objects that can be represented by nonempty hereditarily finite sets
over an infinite set of atoms. The classes of states that are considered are closed under
isomorphism. His axioms formalize the locality and boundedness principles in this
setting.



214 U. Boker and N. Dershowitz

If x is a given state, regions of the next state are determined locally from particular parts
for x on which the computor can operate. Boundedness requires that there are only finitely
many different kinds of such parts. [52]

These “kinds” are formalized by isomorphism types, termed stereotypes.
A Turing computor is defined to comprise a class S of states closed under iso-

morphism, a finite set T of stereotypes, and an operation G on the stereotypes of T ,
satisfying the requirement that for every state x of S there exists a state z of S (the
“next state”) such that the following three axioms hold:

� There exists in x a unique maximal stereotype from T . This unique stereotype
is the causal neighbourhood of x .

� Applying the operation G on the causal neighbourhood of x yields, up to iso-
morphism, a unique region of the state z.

� The state z consists of its above region and the whole of x , excluding the causal
neighbourhood of x .

The first two axioms formalize the principal of local causality and the third the
principle of global assembly.

A computation of aTuring computor is defined to be afinite sequence of transitions
between states using operation G, halting when the next state is the same as the
preceding one.

As for computations over domains that do not consist of hereditarily finite sets,
Sieg speaks of “suitable encoding and decoding” without detailing what is to be
considered suitable:

A function F is (Turing) computable if and only if there is a Turing computor M whose
computation results determine, under suitable encoding and decoding, the values of F for
any of its arguments. [52]

Sieg’s work served to clarify and sharpen Turing’s arguments. Some researchers
view the Turing-Sieg arguments as actually constituting a proof of the thesis. Sieg,
himself, views his work as proving a representation theorem for the class of systems
that can be formulated in a way that meets the stated criteria. Unsurprisingly, those
who are not convinced by Turing’s arguments tend not to be convinced by Sieg’s
more formal arguments either. Another criticism of Sieg’s approach (and of Gandy
before him) is that expressing computability axioms in terms of hereditarily finite
sets representing states—however sensible under the standard set-theoretical, foun-
dational view of the mathematical universe5—is nonetheless insufficiently general
for faithfully modelling effective computations [32, 54].

Gurevich, Boker, and Dershowitz’s Arguments

As Church argued in his classic paper [4], a possible take on the mathematical
thesis is that a Turing machine can compute every function that can be computed
algorithmically, where the term “algorithm” stands for the intensional means of a

5 Gandy’s idea of basing a formalization of computability on hereditarily finite sets, which are
precisely the finite objects of set theory, was presaged by Moto-o Takahashi [53].



9 What is the Church-Turing Thesis? 215

computation. A central point of note is that the equivalence claim is extensional and
not intensional—the algorithm itself is not supposed to be captured by the computa-
tion of a Turing machine and may have various abstraction levels. It is only the result
of the algorithm, namely the function it computes, that is supposed to be captured
by the result of the Turing machine.

When aiming at proving the thesis, one approach is tofirst definewhat an algorithm
is [2, 54], and what atomic operations it can effectively employ.

At the turn of the millennium, Yuri Gurevich proposed three basic postulates for
sequential (non-parallel and non-interactive) algorithms over arbitrary mathematical
structures [55]. By this view, every sequential algorithm should satisfy the following
properties:

� It can be viewed as a set of states and a transition function from state to state.
The importance of this generic view has been emphasized by Don Knuth [56].

� Its states are (first-order) structures sharing the same finite vocabulary. States are
closed under isomorphism, and the transition function preserves isomorphism.
The relevance of logical structures appears already in Emil Post’s notes [57]; the
importance of isomorphism is stressed by Gandy [51].

� There is a finite bound on the number of vocabulary-terms that affect the tran-
sition function. This formalizes ideas expressed by Kolmogorov [58].

Based on these three principles, Gurevich proved that every such sequential algo-
rithm is captured by an abstract state machine, a formalism he defined that expresses
generic algorithms as sets of parallel conditional assignments employing the opera-
tions of the structure [55].

Gurevich’s postulates and proof are a natural starting point for axiomatizing effec-
tiveness over arbitrary domains, not just strings. Yet, there are a couple of “loose
edges” that allow an algorithm that satisfies Gurevich’s postulates to yield an inef-
fective computation:

• The atomic operations, which can be viewed as the initial state of the algorithm,
are not limited and might thus introduce ineffectiveness.

• The postulates consider a single algorithm and not an entire computational model.
Interpreted over an arbitrary domain, the computed function might be ineffective
with respect to a different domain or even with respect to the same domain, under
a different representation.

In 2005, the present authors addressed the above issues by considering the whole
of a computational model, comprising the computations of a set of functions, rather
than a single function, requiring all computations within the same model to share
the same domain view, and restricting the initial states to only have finite data. The
additional restrictions were set out in a fourth postulate [59]:

� There is an initial state to the computation and it comprises only finite data in
addition to the domain representation. The latter is isomorphic to a Herbrand
universe.



216 U. Boker and N. Dershowitz

They proved that every computational model that satisfies the above four postulates
cannot compute more than Turing machines [14].

In 2008, Dershowitz and Gurevich addressed the two issues above in a slightly
different fashion [60]. They required an injective mapping between the arbitrary
domain and the natural numbers, and limited the initial data to be tracked, under that
representation, by a recursive function.

Shortly afterwards, the present authors also showed that the three different
approaches taken to define effectiveness on top of Gurevich’s postulates for a sequen-
tial algorithm—their’s from 2005, Dershowitz and Gurevich’s from 2008, andWolf-
gang Reisig’s from 2008 [61], yield the exact same notion of effectiveness [62].
Whereas the latter two involve ameasure of circularity, using recursiveness or Turing-
computabilty to guarantee that initial states are effective (see the objection in [63,
Postscriptum]), the former, equivalent approach builds only on first principles.

In favour of their view is their notion of state, namely, any mathematical first-
order structure, which might be considered more general and natural than strings
or hereditarily finite sets. Furthermore, their axioms are built on top of Gurevich’s
postulates for sequential algorithms, which aim at capturing the essence of classical
algorithms. As a result, their formalization of effective computability captures amost
general setting of computational models. (Supportive reactions include [64, p. 351n]
and [32].)

The natural criticism of this attempt is that the result just “moves the goalpost”,
shifting the question towhether the provided postulates capture all ofwhat is effective
(e.g. [65, p. 431], [63, Postscriptum]). Gurevich himself believes that his postulates
properly capture the notion of a sequential algorithm, but avers that no definition
can capture what a most “general” algorithm is [54]. Another criticism is that the
postulates are not sufficiently formal [63, Postscriptum], but that can be rectified.

9.5.2 Disproving the Thesis

One way to disprove the mathematical thesis would be to find a function that is not
Turing-computable but which one can convincingly claim can be computed effec-
tively by an idealized human (immortal, untiring, unerring, etc.) equippedwith pencil
and paper and following predetermined instructions. This would be analogous to the
rejection of primitive recursion as capturing all effective computation on the basis
of the effectivity of Ackermann’s function.

As popular textbooks explain:

If one ever found a procedure that fitted the intuitive notions, but could not be described
by means of a Turing machine, it would indeed be of an unusual nature since it could not
possibly be programmed for any existing computer. [66, p. 80]



9 What is the Church-Turing Thesis? 217

It is theoretically possible, however, that Church’s thesis could be overthrown at some future
date, if someone were to propose an alternative model of computation that was publicly
acceptable as fulfilling the requirement of finite labor at each step and yet was provably
capable of carrying out computations that cannot be carried out by any Turing machine. No
one considers this likely. [67, pp. 168–169]

There have been several attempts in this direction, as we will see in this section.
One of the earliest was by Kalmár [25] (explicated in [68]). In particular, he ques-
tioned the commonplace requirement that an algorithmic method be uniform for all
inputs:

We regard as effectively calculable any arithmetical function, the value of which can be
effectively calculated for any given arguments in a finite number of steps, irrespective how
these steps are and how they depend on the arguments for which the function value is to
be calculated. In particular, I do not suppose the calculation method to be “uniform”. [25,
p. 73]

We will encounter such misgivings again.
Considering the computation of specific instances of the halting problem, Turing

commented already in his 1936 paper as follows:

It is an immediate consequence of the theorem of §8 that δ is not computable. It is (so far as
we know at present) possible that any assigned number of figures of §8 can be calculated,
but not by a uniform process. When sufficiently many figures of δ have been calculated, an
essentially new method is necessary in order to obtain more figures. [5, p. 253]

In other words, the thesis places no limits on non-uniform human problem solving
abilities, let alone those of endless generations of humankind. Alfred Tarski is quoted
by Benjamin Wells [69] as referring to problems for which there is a series of non-
uniform solutions as (intuitively) “decidable”.

A related debate surrounds the so called “Artificial Intelligence Thesis” and the
question whether a computational device can act with general human-level intelli-
gence. This AI thesis demands more of the mechanical device in that it must also
be creative, imaginative, and intuitive like human beings. We do not address the AI
question but rather concentrate on mathematical proficiency and ignore other aspects
of human intelligence.

Early on, several objections were voiced that the thesis was wrong for the oppo-
site reason, that Turing’s formalism was overly rich, and that not every Turing-
computable function is effective. See [70, 71]. With the growth of programming
and programming languages, this view is no longer tenable and were dispensed with
already in [72, 73].

Nowadays, one occasionally hears objections from the point of view that
unbounded time and space are wholly unrealistic idealizations, so these imaginary
machines are not “really” effective in any practical sense. From the point of view of
this survey, these are tangential issues.

Another issue, first raised in [74], is how a human interprets the strings that a Tur-
ing machine uses for input and output. Michael Rescorla, for instance, has pointed
out correctly that if one imposes “a deviant interpretation upon numerals then Tur-
ing machines can ‘compute’ intuitively non-computable numerical functions” [75].



218 U. Boker and N. Dershowitz

See [75–78] for a lively discussion. Our preferred solution is to require that all recur-
sive functions remain computable under whatever representation is chosen, so that
any model that ostensibly computes something that a Turing machine cannot must
also be capable of computing whatever a Turing machine can with the identical
encoding scheme [13, 79].

Penrose’s Arguments

In The Emperor’s New Mind [80] and especially in Shadows of the Mind [81], the
eminent physicist, Roger Penrose, contends that human reasoning cannot be captured
by a mechanical device because humans detect nontermination of programs in cases
where digital machines cannot [82]. Penrose thus adapts the similar argumentation
of Lucas [83], which was based on Gödel’s incompleteness results.

How this impinges on the Church-Turing Thesis depends on whether the means
by which Penrose contends that humans can solve the specific halting problem he has
in mind should be deemed “effective” or just “intuitive”. This is somewhat unclear,
because Penrose does not claim to know himself how it is that people achieve what
he asserts they do. Were it by somehow engaging a quantum mechanism embedded
in the human brain (as Penrose speculates in [81]), then this would be an argument
against the physical thesis, but not the mathematical one. But if the basis of the
super-algorithm used for this purpose is ordinary human mathematical knowledge,
such as that taught in an undergraduate computability course (as actually employed
in the diagonalization argument in [81]), then this would be a frontal attack on the
mathematical thesis.

In a nutshell, Penrose’s argument runs as follows:

1. Consider all current sound human knowledge about nontermination.
2. Suppose now that one could reduce said knowledge to a computer program.
3. Then one could also create a self-referential version of said program.
4. From the assumed existence of such a “diagonal” program, a contradiction to its

correct performance can be derived.

Penrose’s resolution of this contradiction is to deny the validity of the second step:
No finite program can incorporate all the algorithmic and mathematical knowledge
that finitely many humans currently have at their disposal.

Since Penrose outlines the procedure by which a human can leverage all the
knowledge of the first step to determine that the program in question is nonterminat-
ing, we may conclude that his argument serves to indicate that humans are somehow
more capable than Turing machines, and that the Church-Turing thesis is false.

Penrose’s conclusions, namely that human reasoning cannot be faithfully simu-
lated by Turing machines, have been heavily critiqued (e.g. [84–86]). The possible
rejoinders are classified in [87]. Assuming that the idealized humans in question will
not die before they decide what to respond and that they would neither knowingly
lie nor impetuously respond without thinking (something that real humans are apt
to do under the circumstances), resolutions of the conundrum raised by Penrose fall
mainly in two categories: (a) humans can err in judgement while believing they are
being truthful; and (b) a human may realize or suspect that there are matters that may



9 What is the Church-Turing Thesis? 219

lie beyond one’s ability to fully comprehend or to express, such as the soundness or
consistency of one’s own vastly complicated internal workings.

An example of objection (a) is this:

No human mathematician can claim infallibility. We all make mistakes! So there is nothing
in Gödel’s theorem to preclude the mathematical powers of a human mind being equivalent
to an algorithmic process that produces false as well as true statements. [88]

An example of the second objection is

The possibility exists that each of the rules that a human mathematician explicitly relies on,
or can be rationally persuaded to rely on, can be known to be sound and that the program
generates all and only these rules but that the program itself cannot be rendered sufficiently
“perspicuous” for us to know that that is what it does…. A program which simulated the
brain of an idealizedmathematicianmight well consist of hundreds of thousands (or millions
or billions) of lines of code. Imagine it given in the form of a volume the size of the NewYork
telephone book. Then we might not be able to appreciate it in a perfectly conscious way, in
the sense of understanding it or of being able to say whether it is plausible or implausible that
it should output correct mathematical proofs and only correct mathematical proofs. [89]

In other words, one may in fact only know correct rules, but at the same time be
unable to establish that fact. Or, one may even realize that declaring soundness out
loud might ipso facto make it false. In such cases, it would seem to us that a cautious
human may simply prefer, or feel compelled, to maintain judicious silence [87].

9.6 The Physical Thesis

What are the “Rules of the Game”?

In the mathematical thesis, the number of computation steps is finite but unbounded.
This no longer stands as a clear rule in the physical thesis—a step is not always a
physical notion. We might want to consider analogue phenomena and how discrete
entities are conceived in the physical world. The input and output of such a com-
putation are to be understood by the human user as natural numbers, whereas the
computation and entities involved are continuous, analogue processes.

We do not address the issue of what constitutes an effective real-valued function,
normally expressed in terms of approximations of increasing accuracy (e.g. [90]).

Analysing the physical thesis, one needs to look into current physical theories of
the universe and how humans can accordingly take advantage of physical phenomena
for performing computations. Whereas the resources consumed in a computation
must be finite, though unlimited upfront, there might indeed be limitations on them
stemming from the constraints of physical theories, such as the speed of light, the
uncertainty principle, etc. As put by Oron Shagrir [91, p. 231]:

In this context, a physical system is any system, real or potential, such that (a) its states
occupy a finite space, (b) its terminating dynamics are completed in finite real time, and
(c) its dynamics are consistent with the laws of physics.



220 U. Boker and N. Dershowitz

9.6.1 Proving the Thesis

Several arguments have been aired in support of the physical thesis. These arguments
provide axioms that are claimed to express limitations on physical computations in
consonance with current physical theories. Then, properties of all systems obeying
those axioms are derived. In considering an attempt to disprove the physical thesis,
one may ask which of the axioms is violated and argue whether a particular axiom
should be adopted.

Gandy’s Arguments

The most notable effort to prove the physical thesis was initiated by Robin Gandy
(who was Turing’s student) in 1980 [51]. He defined four principles that, according
to his understanding of physics, every “discrete mechanical device” should satisfy.
The principles are derived from two basic physical assumptions: that there is a lower
bound on the size of atoms and that there is an upper bound on the speed of signal
propagation. The main difference between Gandy’s principles and Turing’s assump-
tions on effectiveness is that Gandy allows for unbounded parallelism: There can
be unboundedly many different units computing in parallel. Gandy then proved that
whatever is computed by such a device is also Turing computable.

Gandy’s four principles are the following, stated roughly:

� The machine can be described by a transition system, where the states are hered-
itarily finite sets.

� The set-theoretic rank of the states is bounded.
� There is a finite set of basic parts from which all states can be assembled.
� For each region of the machine, its next state only depends on its neighbourhood

of a bounded size.

Gandy’s work was much appreciated for its novelty and depth, though perceived
as somewhat overly complicated [23, 54]. Sieg and John Byrnes simplified Gandy’s
principles and arguments [92], and they were later further modified by Sieg [52].
(See below.) They are critiqued in [91].

One natural claim against Gandy’s arguments are that his four principles are too
restrictive, not covering all of what is physically effective. In particular,

• The restriction to discrete devices is improper as physical devicesmay be analogue;
we should also consider what the limits of analogue computations are [32, 93, 94].

• The first principle of finite information for each state and the fourth principle of
local causality are not obeyed by quantum physics [95, 96].

• The parallelism is only synchronous, namely the different units proceed in
synchronous steps, whereas actual independent computations are not
synchronous [54].

• The requirement to have finitely many steps in a terminating computation is dis-
obeyed by devices that allow for unbounded acceleration, which might be possible
by laws of special and general relativity [94].



9 What is the Church-Turing Thesis? 221

Sieg’s Arguments

Following in Gandy’s footsteps, Sieg extends the suppositions about what an ide-
alized human “computor” can rigorously do with paper and pencil (Sect. 9.5) to
assertions regarding what a parallel computing device (Gandy machine) can do [52].
These assertions still stem from the same principles of boundedness and locality,
justified in this case by the physical lower bound on the size of atoms (or fundamen-
tal particles) and the physical upper bound on the speed of signal propagation, yet
generalized to allow for parallelism. After formalizing these assertions, he proves
that every computation of such a Gandy machine is in fact Turing computable.

Recall that Sieg defines a computor to comprise a class S of states closed under
isomorphism, a finite set T of stereotypes, and an operation G on the stereotypes
of T , satisfying some requirements. Now, he defines a Gandy machine to have in
addition another set T ′ of stereotypes and another operation G ′ on stereotypes T ′,
which allow it to coördinate parallel computations. He then generalizes the axioms
that formalize local causality and global assembly for such a parallel machine.

Compared to Gandy’s original four principles, as roughly expressed above, Sieg
retains the first and fourth, while relaxing the second and third. Since Sieg’s for-
mulation puts limits only on causal neighbourhoods, entire states need not have a
bounded set-theoretic rank and need not be assembled from a finite set of basic parts.
Accordingly, objections to Gandy’s arguments that concern his second and third
principles do not hold for Sieg’s arguments, while claims against Gandy’s first and
fourth principle, as described above, still carry over to Sieg’s.

Arrighi and Dowek’s Arguments

Pablo Arrighi and Gilles Dowek generalized Gandy’s principle and proof to quantum
computations [95].

Gandy’s first principle, according to which states can be defined by finite sets, is
based on his assumption that information has a finite density, which no longer holds
in quantum theory. (See [97].) Arrighi andDowek provide a different assumption that
also holds in quantum theory and allows for the first principle—that each projective
measurement of the system, at any given point in time, may only yield a finite number
of possible outcomes.

Gandy’s fourth principle of local causality is based on bounded velocity, which
fails to stand in the quantum setting. Arrighi and Dowek provide instead a quantum
version of causality, based on the assumption that the global evaluation of the system
is “localizable”, namely that it is implementable by local mechanisms [98, 99].

9.6.2 Disproving the Thesis

There are two types of claims against the thesis; the first is that there are currently
computing devices that exceed Turing computability, and the second is that our
physical theories allow for theoretical devices that exceed Turing computability and



222 U. Boker and N. Dershowitz

might possibly be built in the future. The first claim, concerning existingmachines, is
mostly based on randomness and learnability. We have already encountered several
claims that the human mind may somehow enjoy such “super-Turing” capabilities,
particularly that of Penrose. One more is given below.

The second sees no reason for nature to submit to the constrictions imposed on it
by computability theory. Kripke [32, p. 91] writes:

Consider such dimensionless physical constants as the electron-proton mass ratio, or the fine
structure constant. As far as I have heard, at the present time physical theory has nothing
much to say about the mathematical properties of these numbers, whether they are algebraic
or transcendental, or even rational or irrational. In particular, it might well be the case that
the decimal expansions of these numbers are not Turing computable. Assume this is so, and
also assume that time is infinite in extent and that there are no limitations in energy that
prevent computations of these decimals to any number of places. As far as I can see, nothing
in principle rules this out. Then an empirically possible machine would exist that calculates
a decimal not computable in Turing’s sense.

Many arguments for and against hypercomputation are collected in [100].

9.6.2.1 Existing Devices

Biological Devices

Allowing one to compute with the aid of any physical device and taking biology as an
aspect of physics, we end up with having humans on both sides of the computation—
both as those who perform the computation using a physical-biological device and
as the device itself. With such an outlook, the border between the physical Church-
Turing thesis and the AI Thesis gets even blurrier.

Bringsjord’s Arguments

Selmer Bringsjord and his colleagues claim to have mustered strong evidence that
human beings can compute more than Turing machines. They claim that people can
solve the “busy beaver” problem, which is known to be beyond the capabilities of
Turing machines. This is intended as an attack on computationalism, along the lines
of Gödel’s reflections.6

Bringsjord embarked on an NSF-funded project to compute explicit values of the
Busy Beaver function, called here�B . Given its success in evaluating several values,
he then proceeds to make the following claim:

Persons must in some real way be capable of infinitary information processing….

The idea is really quite simple: If humans are smart enough to determine �B(n), they will
eventually (perhaps after 100 years, perhaps after 1000, perhaps after 1,000,000,000, …) be
smart enough to determine �B(n + 1) …. While [this premise] may not be unassailable, a
variant would seem to be, viz., that if humans are smart enough to determine �B(n), it’s
then mathematically possible that they determine �B(n + 1). [102]

6 Another argument of Bringsjord, explicitly touted as “a case against Church’s thesis”, takes its
cue from the perceived ability of humans to judge the literary quality of writings that they cannot
for the life of them produce themselves [101].



9 What is the Church-Turing Thesis? 223

Owen Kellett, Bringsjord’s student and one of the authors of [102], elaborates:

Human visual reasoning system possesses [natural, physical] computational powers beyond
the Turing limit, and these powers can be employed in efforts to solve �(n)…. The Busy
Beaver function … is still computable by the fantastic capabilities of the human mind.

While Turing machines hold their place in conventional computability theory, the laws of
the physical world are beyond the computational expressive power of Turing machines.
Therefore, humans, a part of this physical universe, can harness this power to perform
computations beyond the Turing limit. [103]

Thus, this argument is akin to Penrose’s, appealing to unknown natural hypercom-
putational mechanisms that are somehow harnessed by biological brains. As such it
is an attack on the physical thesis (or the non-mathematical one). In his book with
Michael Zenzen, Superminds, Bringsjord summarizes his point of view:

Persons are superminds: they are simple souls capable of cognition capturable by standard
computationalism, cognition capturable by hypercomputationalism, and cognition that will
forever resist capturing in any third-person scheme. [104, §7.3]

Bringsjord conveniently lists the main objections to this claim, presumably culled
from reviews and other reactions:

• This assertion resembles the claim that the human record for the 100m run will
converge to 0 s, since we achieve a new record with each passing year…. Solving
the busy beaver problem for input up to 6 … doesn’t tell us much about the limits
of the human mind.7

• The theorem … only implies that humans will get stuck billions of orders of
magnitude past where current research on computing the function stands.

• Humans are far from immune to errors.
• There is some confusion of a specific person with all of humanity, past, present,
and future.

• There is … a hidden assumption that people are unaffected by nature…. Histori-
cally, many scientific breakthroughs happen serendipitously.

Randomness

True randomness is believed by most physicists to exist in nature [106], whereas an
ordinary Turing machine is incapable of generating truly random values. Hence, we
simply get that random sequences, which can be computed by actual devices, falsify
the physical thesis [107, p. 74], [108, p. 10].

A counterargument is that a random number (qua indexed sequence of digits) is
not a calculation in the intended sense of the thesis. Proper functions always provide
the identical output to the same input, which is not the case if a device randomly
generates output values or uses such values to guide computation.

7 Herbert Robbins, the statistician: “Nobody is going to run 100-meters in five seconds, no matter
how much is invested in training and machines. The same can be said about using the brain. The
human mind is no different now from what it was five thousand years ago. And when it comes to
mathematics, you must realize that this is the human mind at an extreme limit of its capacity” [105].



224 U. Boker and N. Dershowitz

The above remarks converge on the conclusion that genuine random processes are not com-
putations. Unlike computations properly so-called, random processes cannot be used to
generate the desired values of a function or solve the desired instances of a general problem.
[16, p. 751]

Quantum physicist, David Deutsch, writes:

Quantum computing machines, and indeed classical stochastic computing machines, do not
“compute functions” in the above sense: the output state of a stochastic machine is random
with only the probability distribution function for the possible outputs depending on the
input state. [109]

So we might ask instead that the distribution of outputs satisfy some requirements.
In cases where a random process provides the same one output with high probabil-

ity, it can be considered an estimation of a proper function, and we may ask whether
the function that it estimates is computable by a Turing machine. The answer to
this question is “yes”, as one may derandomize such a process, trying all paths until
some required percentage give the same answer [110] (though this does depend on
the precise definitions [111]).

A different way to handle random numbers in a “proper function” setting might
be to fix a computation by augmenting it with a memory cache. Consider a device M
that maintains an unbounded array R of binary values, initially blank. Whenever M
is presented with an input n ∈ N, it does the following: If R[n] is blank, it randomly
chooses between 0 and 1, stores this bit in R[n], and returns it as the value of the
function on n; on the other hand, if R[n] already has value v, it returns that v. Such
a device computes a proper function R : N → {0, 1}, but has the characteristics of
an interactive process, which in itself need not make it ineffective or non-Turing-
computable, as discussed inSect. 9.2.Yet, because it learns and evolveswith time, one
may argue whether it is better viewed as an infinite series of distinct computations,
rather than as a device for repeatedly computing a single function. An additional
reason to contend that this is not a valid attack on the thesis is the uniqueness of
the device—any attempt to clone it will result in a different device, with different
behaviour, computing a different function.

Evolution and Learnability

An interactive process evolves over time—it maintains a memory that may grow and
change from one invocation of the process to another. A central question is then how
does it evolve: Is its evolution predefined or not?

There are claims against the physical thesis, arguing that internet applications,
such as Google Translate, transcend Turing computability (e.g. [112]). So as to
consider such an evolving process as a proper function that always returns the same
output for the same input, one may augment every “genuine” call to the application
with a unique number and cache all previous queries as explained above with respect
to a random process.

Themain argument against such claims is that the evolvement of the application is
not predefined. Google Translate, for example, changes over time not as a result of a
predefined learning algorithm, but as a result of humans modifying it. Hence, claims



9 What is the Church-Turing Thesis? 225

that such computations exceed Turing computability are analogous to claims that the
humanmind, and possibly all of future humanity, exceed Turing computability in the
limit. Such processes are usually not considered to lie under the rubric of effective
means [21, p. 50].

9.6.2.2 Futuristic Devices

We list below some of the claims about theoretical devices that may agree with
modern physical theories and compute more than Turing machines.

Zeno Machines

A Zeno machine or accelerating machine can be thought of as a standard Turing
machine in which each step is performed in, say, half the time of the previous
step [113–116]. Having such an accelerating machine, one can solve the halting
problem: If the first step takes, for example, a second, any number of steps takes less
than two seconds. Hence, after two seconds we (the machine users) can inspect the
machine’s tape and check if it has a haltingmark. In case that it does not, we know that
it does not halt. The logical possibility of such a device has long been debated [113,
117]. On the other hand, there are claims that such an accelerating device, as well
as communication with it, is theoretically possible in the vicinity of certain kinds of
black holes by certain interpretations of special and general relativity [118–122].

One criticism of this view is that its physical assumptions do not match current
physical theories and that, even under these assumptions, communication is only
possible from Earth to the vicinity of the black hole, and not the other way round,
providing a “one-way ticket” to knowing whether computation has ended [123, 124],
as well as logical considerations [125].

Accessible Reals

Equipped somehow with an infinite precision real number, a device can easily com-
pute beyond Turing machines. A simple example is Fred Abramson’s Extended
Turing Machine, which can store a real number on a single square of its tape [126].

A more classic example of calculating with reals is ruler (straightedge) and com-
pass (RC) computations. A common algorithmic definition runs something like this:

Given a finite set of points B = {B0, . . . , Bm} in the Euclidean plane, a point P is RC-
constructible from the set B if there is a finite set of points {P0, . . . , Pn} such that P = Pn ,
P0 ∈ B and every point Pi (1 ≤ Pi ≤ n) is either a point of B or is at the intersection either
of two lines, or of a line and a circle, or of two circles, themselves obtained as follows:

– any considered line passes through two distinct points from the set {P0, . . . , Pi−1};
– any considered circle has its centre in the set {P0, . . . , Pi−1} and its radius is equal to the

distance Pj Pk for some j < i and k < i . [127, trans. [128]]

The widespread view is that RC-computations do not exceed Turing computability,
merely allowing one to compute a certain family of algebraic numbers (Wantzel’s
Theorem; see [129]). Yet, if initial points are arbitrary real points in the plane—given



226 U. Boker and N. Dershowitz

either as inputs or as elements of the initial state of a device, then with the addition of
a “unit” segment that represents the natural number 1 and basic geometric operations,
one can compute non-Turing-computable functions over the natural numbers [130].

Amore involved example is Hava Siegelmann’s version of neural networks [131].
The main criticism of these types of computation, from an effectiveness point of

view, is the inaccessibility of the infinite precision needed to set up the computation
framework [132], and that “the claimed noncomputability was nothing more than
that of the real numbers provided at the beginning” [7]. But were there a primordial
uncomputable fundamental constant in the universe—and a priori there is no phys-
ical reason to preclude that possibility, then accessing its digits by means of some
idealized experiment might serve to violate the physical thesis, as already noted [32,
p. 91].

Quantum Computers

The dominant viewof quantumcomputation is that, if it is feasible and scalable, it will
allow one to compute faster than Turing machines but will not enable one to compute
more [95, 109]. If this view holds true, it would disprove the “extended” thesis,
but not the original one. Still, there are also more audacious claims that quantum
mechanics might allow for computing devices that exceed Turing computability [96,
133, 134]. Tien Kieu, for example, suggests a way to use the Quantum Adiabatic
Theorem to provide a computational solution to Hilbert’s Tenth Problem, which is
known to be Turing uncomputable [96]. Criticisms of Kieu’s proposal include issues
of representation and concerns that adiabatic evolution fails to actually reach the
required solution [7, 135–137].

Deutsch’s Arguments

Another reaction to the stance that natural randomprocesses falsify the physical thesis
is to assert that computability at its core is indeed Turing-machine computability.
Having said that, to extend the Turing model’s scope from classical functions to
stochastic functions, one merely needs to augment it with a (physical or oracular)
source of randomness. This, as we have seen, accords with Turing’s own perspective
when describing the “choice machine” variant of his eponymous machines: “When
such a machine reaches one of these ambiguous configurations, it cannot go on until
some arbitrary choice has been made by an external operator” [5]. In this context,
the “external operator” would be a physical apparatus, rather than a human guide.

Deutsch reformulated the physical Church-Turing thesis as an explicit postulate
about nature herself, what is now known as “Deutsch’s Principle”:

Every finitely realizible physical system can be perfectly simulated by a universal model
computing machine operating by finite means. [109]

Specifically, he posits that a quantum generalization of the Turing machine can
simulate every physical process, in the sense that for every possible input state,
represented in some fixed way, the distribution of outcomes of output experiments
is the same (up to representation) as for the physical system:



9 What is the Church-Turing Thesis? 227

A class of model computing machines that is the quantum generalization of the class of
Turingmachines is described, and it is shown that quantum theory and the “universal quantum
computer” are compatible with the principle. [109]

Empowered this way, Deutsch’s proposed quantum machine computes discrete
functions faster than Turing’s machine can, can compute stochastic outputs that no
classical system can reproduce, and can compute continuous functions to arbitrarily
high (albeit imperfect) accuracy [109].

It is, of course, an open (unanswerable) question whether there is at all any com-
plete, immutable, finite description of the (observable) behaviour of the physical
universe [138].

9.7 Conclusion

In summary, most computer scientists take themathematical thesis for granted, based
on the strong arguments put forth by Turing and those who followed him.

Moreover, there is a long list of highly regarded logicians who are of the opinion
that there is room for formalization and perhaps proof of the mathematical thesis,
including: Gödel, Gandy, Mendelson, Shoenfield, Shapiro, George Kreisel [139],
Sieg, Kripke, Soare, Robert Black [140], Friedman, and Gurevich. Some have even
proposed formal proofs or sketches of proofs. Other scholars, starting with Church,
Turing, andKleene and continuing to the present, maintain that there is an impassable
dissonance between intuitive and formal notions of effectiveness.

The physical thesis, on the other hand, enjoys far less support, as also purported
claims of hypercomputability.

Acknowledgements We are enormously grateful for comments and suggestions from Arnon
Avron, Erwin Engeler, Oron Shagrir, Wilfried Sieg, and an anonymous reader.

References

1. Emil L. Post. Finite combinatory processes—formulation 1. Journal of Symbolic Logic, 1 (3):
103–105, September 1936.

2. Yiannis N. Moschovakis. What is an algorithm? In Björn Engquist and Wilfried Schmid,
editors,Mathematics Unlimited — 2001 and Beyond, pages 919–936. Springer, Berlin, 2001.

3. Erwin Engeler. The Combinatory Programme. Progress in Theoretical Computer Science.
Birkhäuser, Boston, 1995.

4. Alonzo Church. An unsolvable problem of elementary number theory. American Journal of
Mathematics, 58: 345–363, 1936.

5. Alan. M. Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, 42: 230–265, 1936–37. URL http://www.
abelard.org/turpap2/tp2-ie.asp. Corrections in vol. 43 (1937), pp. 544–546. Reprinted in M.
Davis (ed.), The Undecidable, Raven Press, Hewlett, NY, 1965.

http://www.abelard.org/turpap2/tp2-ie.asp
http://www.abelard.org/turpap2/tp2-ie.asp


228 U. Boker and N. Dershowitz

6. Stephen C. Kleene. Lambda-definability and recursiveness. Duke Mathematical Journal, 2:
340–353, 1936.

7. Martin Davis. The Church-Turing thesis: Consensus and opposition. In Logical Approaches
to Computational Barriers, pages 125–132, Berlin, 2006. Springer.

8. Andrew Hodges. Did Church and Turing have a thesis about machines? In Adam Olszewski,
Jan Wolenski, and Robert Janusz, editors, Church’s Thesis After 70 Years, pages 214–224.
Ontos Verlag, 2006.

9. Robert I. Soare. The history and concept of computability. In Handbook of Computability
Theory, pages 3–36. Elsevier, 1999.

10. Ian Parberry. Parallel speedup of sequential machines: A defense of parallel computation
thesis. SIGACT News, 18 (1): 54–67, March 1986.

11. Peter van Emde Boas. Machine models and simulations. In J. van Leeuwen, editor,Handbook
of Theoretical Computer Science, volume A: Algorithms and Complexity, pages 1–66. North-
Holland, Amsterdam, 1990. URL http://www.illc.uva.nl/Research/Reports/CT-1988-05.text.
pdf.

12. Scott Aaronson. The toaster-enhanced Turing machine, 2012. URL https://www.
scottaaronson.com/blog/?p=1121. The Blog of Scott Aaronson.

13. Udi Boker and Nachum Dershowitz. Comparing computational power. Logic
Journal of the IGPL, 14 (5): 633–648, 2006. URL http://nachum.org/papers/
ComparingComputationalPower.pdf.

14. Udi Boker and Nachum Dershowitz. The Church-Turing thesis over arbitrary domains. In
Arnon Avron, Nachum Dershowitz, and Alexander Rabinovich, editors, Pillars of Computer
Science, Essays Dedicated to Boris (Boaz) Trakhtenbrot on theOccasion of His 85th Birthday,
volume 4800 of Lecture Notes in Computer Science, pages 199–229. Springer, 2008. URL
http://nachum.org/papers/ArbitraryDomains.pdf.

15. Martin Davis. The myth of hypercomputation. In Christof Teuscher, editor, Alan Turing: Life
and Legacy of a Great Thinker, pages 195–212. Springer, 2003.

16. Gualtiero Piccinini. The physical Church-Turing thesis: Modest or bold? The British Journal
for the Philosophy of Science, 62: 733–769, 2011.

17. Dina Goldin and Peter Wegner. The Church-Turing Thesis: Breaking the myth. In S. Barry
Cooper, Benedikt Löwe, and Leen Torenvliet, editors, New Computational Paradigms: First
Conference on Computability in Europe (CiE 2005, Amsterdam), volume 3526 of Lecture
Notes in Computer Science, pages 152–168, Berlin, June 2005.

18. Dina Goldin and Peter Wegner. The interactive nature of computing: Refuting the strong
church-turing thesis.Minds and Machines, 18: 17–38, March 2008.

19. Manfred Broy. Computability and realizability for interactive computations. Information and
Computation, 241: 277–301, 2015.

20. Dina Q. Goldin, Scott A. Smolka, and Peter Wegner, editors. Interactive Computation: The
New Paradigm. Springer, Berlin, 2006.

21. Stephen C. Kleene. Turing’s analysis of computability, and major applications of it. In AHalf-
century Survey on TheUniversal TuringMachine, pages 17–54. OxfordUniversity Press, Inc.,
1988.

22. Janet Folina. Church’s thesis: Prelude to a proof. Philosophia Mathematica, 6 (3): 302–323,
1998.

23. Stewart Shapiro. Understanding Church’s thesis, again. Acta Analytica, 11: 59–77, 1993.
24. Stephen C. Kleene. Introduction to Metamathematics. North Holland, 1952.
25. László Kalmár. An argument against the plausibility of Church’s thesis. In A. Heyting, editor,

Constructivity in Mathematics, Proceedings of the Colloquium Held at Amsterdam, 1957,
pages 72–80, Amsterdam, 1959. North-Holland.

26. Martin Davis. Why Gödel didn’t have Church’s Thesis. Information and Control, 54 (1/2):
3–24, 1982.

27. JosephR. Shoenfield.Recursion Theory, volume 1 ofLectureNotes In Logic. Springer-Verlag,
Heidelberg, New York, 1991.

http://www.illc.uva.nl/Research/Reports/CT-1988-05.text.pdf
http://www.illc.uva.nl/Research/Reports/CT-1988-05.text.pdf
https://www.scottaaronson.com/blog/?p=1121
https://www.scottaaronson.com/blog/?p=1121
http://nachum.org/papers/ComparingComputationalPower.pdf
http://nachum.org/papers/ComparingComputationalPower.pdf
http://nachum.org/papers/ArbitraryDomains.pdf


9 What is the Church-Turing Thesis? 229

28. Elliott Mendelson. Second thoughts about Church’s thesis and mathematical proofs. Journal
of Philosophy, 87 (5): 225–233, 1990.

29. Robin Gandy. The confluence of ideas in 1936. In A Half-Century Survey on the Universal
Turing Machine, pages 55–111, New York, NY, 1988. Oxford University Press, Inc. URL
http://dl.acm.org/citation.cfm?id=57249.57252.

30. Stewart Shapiro. Proving things about the informal. In G. Sommaruga and T. Strahm, editors,
Turing’s Revolution: The Impact of his Ideas About Computability, pages 283–296. Springer,
Cham, January 2015.

31. Harvey M. Friedman. Mathematical logic in the 20th and 21st centuries, 2000. URL http://
cs.nyu.edu/pipermail/fom/2000-April/003913.html. FOM mailing list. April 27, 2000.

32. Saul A. Kripke. The Church-Turing “thesis” as a special corollary of Gödel’s completeness
theorem. In J. Copeland, C. Posy, and O. Shagrir, editors, Computability: Turing, Gödel,
Church, and Beyond, pages 77–104. MIT Press, 2013.

33. UdiBoker andNachumDershowitz. The influence of domain interpretations on computational
models. Journal of Applied Mathematics and Computation, 215 (4): 1323–1339, 2009.

34. HenkBarendregt. The impact of the lambda calculus in logic and computer science.Bulletin of
Symbolic Logic, 3 (2): 181–215, 1997. URL http://www.math.ucla.edu/~asl/bsl/0302/0302-
003.ps.

35. Solomon Feferman. Theses for computation and recursion on concrete and abstract struc-
tures. In Turing’s Revolution: The Impact of His Ideas about Computability, pages 105–126.
Springer International Publishing, 2015.

36. David Chalmers. A computational foundation for the study of cognition. Journal of Cognitive
Science, 12 (4): 325–359, 2011. Written in 1993.

37. Hartley Rogers, Jr.Theory of Recursive Functions and Effective Computability.McGraw-Hill,
New York, 1966.

38. Stephen C. Kleene. Origins of recursive function theory. Annals of the History of Computing,
3 (1): 52–67, 1981.

39. Wilfried Sieg. Step by recursive step: Church’s analysis of effective calculability. Bulletin of
Symbolic Logic, 3: 154–180, June 1997.

40. Alonzo Church. Review of “On computable numbers, with an application to the Entschei-
dungsproblem”. The Journal of Symbolic Logic, 2 (1): 42–43, 1937.

41. Hao Wang. A Logical Journey. From Gödel to Philosophy. MIT Press, 1996.
42. Kurt Gödel. Some remarks on the undecidability results. In Solomon Feferman, JohnDawson,

and Stephen Kleene, editors, Kurt Gödel: Collected Works, Vol. II, pages 305–306. Oxford
University Press, 1972.

43. Hao Wang. Reflections on Kurt Gödel. Bradford Books. MIT Press, 1990.
44. Hao Wang. From Mathematics to Philosophy. Kegan Paul, London,UK, 1974.
45. Oron Shagrir. Gödel on Turing on computability. In Adam Olszewski, Jan Wolenski, and

Robert Janusz, editors, Church’s Thesis after 70 Years, pages 393–419. Ontos-Verlag, 2006.
46. Arnon Avron. The problematic nature of Gödel’s disjunctions and Lucas-Penrose’s theses.

Semiotic Studies, 34(1): 83–108, 2020.
47. Jon Barwise. An introduction to first-order logic. In Jon Barwise, editor, Handbook of Math-

ematical Logic, chapter A.1, pages 5–46. North-Holland, 1977.
48. Reinhard Kahle. Is there a “Hilbert Thesis?” Studia Logica, 107: 145–165, 2019.
49. Wilfried Sieg. Mechanical procedures and mathematical experience. In Alexander George,

editor, Mathematics and Mind, pages 71–117. Oxford University Press, 1994.
50. Saul A. Kripke. The origins and nature of computation, 2006. URL https://www.youtube.

com/watch?v=D9SP5wj882w. Presented at the 21st International Workshop on the History
and Philosophy of Science. Jerusalem, Israel.

51. Robin Gandy. Church’s thesis and principles for mechanisms. In J. Barwise, D. Kaplan, H. J.
Keisler, P. Suppes, and A. S. Troelstra, editors, The Kleene Symposium, volume 101 of Studies
in Logic and The Foundations of Mathematics, pages 123–148. North-Holland, 1980.

52. WilfriedSieg.Churchwithout dogma:Axioms for computability. InS.BarryCooper,Benedikt
Löwe, and Andrea Sorbi, editors, New Computational Paradigms: Changing Conceptions of
What is Computable, pages 139–152, New York, 2007. Springer.

http://dl.acm.org/citation.cfm?id=57249.57252
http://cs.nyu.edu/pipermail/fom/2000-April/003913.html
http://cs.nyu.edu/pipermail/fom/2000-April/003913.html
http://www.math.ucla.edu/~asl/bsl/0302/0302-003.ps
http://www.math.ucla.edu/~asl/bsl/0302/0302-003.ps
https://www.youtube.com/watch?v=D9SP5wj882w
https://www.youtube.com/watch?v=D9SP5wj882w


230 U. Boker and N. Dershowitz

53. Moto-o Takahashi. A foundation of finite mathematics. Publications of the Research Institute
for Mathematical Sciences, 12: 577–708, 1977.

54. Yuri Gurevich. What is an algorithm? In SOFSEM 2012: Theory and Practice of Computer
Science, pages 31–42, 2012.

55. Yuri Gurevich. Sequential abstract state machines capture sequential algorithms. ACM Trans-
actions on Computational Logic, 1: 77–111, 2000.

56. Donald E. Knuth. Algorithm and program; information and data. Communications of the
ACM, 9: 654, 1968.

57. Emil L. Post. Absolutely unsolvable problems and relatively undecidable propositions:
Account of an anticipation. In M. Davis, editor, Solvability, Provability, Definability: The
Collected Works of Emil L. Post, pages 375–441. Birkhaüser, Boston, MA, 1994. Unpub-
lished notes, 1941.

58. Andreı̆ N. Kolmogorov. O ponyatii algoritma [On the concept of algorithm] (in Russian).
Uspekhi Matematicheskikh Nauk [Russian Mathematical Surveys], 8 (4): 1175–1176, 1953.
English version in: Vladimir A. Uspensky and Alexei L. Semenov, Algorithms: Main Ideas
and Applications, Kluwer, Norwell, MA, 1993, pp. 18–19.

59. UdiBoker andNachumDershowitz.Abstract effectivemodels. InM.Fernández and I.Mackie,
editors, New Developments in Computational Models: Proceedings of the First International
Workshop on Developments in Computational Models (DCM 2005), Lisbon, Portugal (July
2005), volume 135 of Electronic Notes in Theoretical Computer Science, pages 15–23, 2006.

60. Nachum Dershowitz and Yuri Gurevich. A natural axiomatization of computability and proof
of Church’s Thesis. Bulletin of Symbolic Logic, 14 (3): 299–350, 2008. https://doi.org/10.
2178/bsl/1231081370.

61. Wolfgang Reisig. The computable kernel of Abstract State Machines. Theoretical Computer
Science, 409: 126–136, 2008.

62. Udi Boker and Nachum Dershowitz. Three paths to effectiveness. In Andreas Blass, Nachum
Dershowitz, and Wolfgang Reisig, editors, Fields of Logic and Computation: Essays Dedi-
cated to Yuri Gurevich on the Occasion of His 70th Birthday, volume 6300 of Lecture Notes
in Computer Science, pages 36–47, Berlin, 2010. Springer. URL http://nachum.org/papers/
ThreePathsToEffectiveness.pdf.

63. Wilfried Sieg. Axioms for computability: Do they allow a proof of Church’s thesis? In Hector
Zenil, editor, A Computable Universe. Understanding and Exploring Nature as Computation,
pages 99–123. World Scientific/Imperial College Press, Singapore, 2013.

64. Elliott Mendelson. Introduction to Mathematical Logic. Discrete Mathematics and Its Appli-
cations. CRC Press, 5th edition, 2009.

65. William J. Rapaport. Philosophy of Computer Science. Online draft, 2020. URL https://cse.
buffalo.edu/~rapaport/Papers/phics.pdf.

66. John E. Hopcroft and Jeffrey D. Ullman. Formal Languages and Their Relation to Automata.
Addison-Wesley, Reading, MA, 1968.

67. Harry R. Lewis and Cristos H. Papadimitriou. Elements of the Theory of Computation.
Prentice-Hall, Englewood Cliffs, NJ, 1981.

68. Máté Szabó. Kalmár’s argument against the plausibility of Church’s thesis. History and Phi-
losophy of Logic, 39 (2): 140–157, 2018.

69. Benjamin Wells. Is there a nonrecursive decidable equational theory? Minds and Machines,
12 (2): 301–324, 2002.

70. Rózsa Péter. Rekursivität und konstruktivität. In A. Heyting, editor, Constructivity in Mathe-
matics, Proceedings of theColloquiumHeld atAmsterdam, 1957, pages 226–233,Amsterdam,
1959. North-Holland.

71. JeanPorte.Quelques pseudo-paradoxes de la ‘calculabilite effective’. InActes du 2meCongrès
International de Cybernétique, pages 332–334, Namur, Belgium, 1960.

72. ElliottMendelson.On some recent criticismofChurch’s thesis.NotreDame Journal of Formal
Logic, IV (3): 201–205, July 1963.

73. YiannisN.Moschovakis. Reviewof four recent papers onChurch’s thesis. Journal of Symbolic
Logic, 33 (3): 471–472, 1968.

https://doi.org/10.2178/bsl/1231081370
https://doi.org/10.2178/bsl/1231081370
http://nachum.org/papers/ThreePathsToEffectiveness.pdf
http://nachum.org/papers/ThreePathsToEffectiveness.pdf
https://cse.buffalo.edu/~rapaport/Papers/phics.pdf
https://cse.buffalo.edu/~rapaport/Papers/phics.pdf


9 What is the Church-Turing Thesis? 231

74. Stewart Shapiro. Acceptable notation. Notre Dame Journal of Formal Logic, 23 (1): 14–20,
1982.

75. Michael Rescorla. Copeland and Proudfoot on computability. Studies in History and Philos-
ophy of Science Part A, 43 (1): 199–202, 2012. Reconsidering the Dynamics of Reason: A
Symposium in Honour of Michael Friedman.

76. B. Jack Copeland and Diane Proudfoot. Deviant encodings and Turing’s analysis of com-
putability. Studies in History and Philosophy of Science, 41: 247–252, September 2010.

77. Michael Rescorla. Church’s thesis and the conceptual analysis of computability. Notre Dame
Journal of Formal Logic, 48 (2): 253–280, 2007.

78. Michał Wroclawski. Representations of natural numbers and computability of various func-
tions. In Florin Manea, Barnaby Martin, Daniël Paulusma, and Giuseppe Primiero, editors,
Proceedings of the 15th Conference on Computability in Europe - Computing with Foresight
and Industry (CiE 2019, Durham, UK), volume 11558 of Lecture Notes in Computer Science,
pages 298–309. Springer, July 2019.

79. Udi Boker and Nachum Dershowitz. A hypercomputational alien. Applied Mathematics and
Computation, 178 (1): 44–57, 2006.

80. Roger Penrose. The Emperor’s New Mind: Concerning Computers, Minds, and The Laws of
Physics. Oxford University Press, New York, 1989.

81. Roger Penrose. Shadows of the Mind: A Search for the Missing Science of Consciousness.
Oxford University Press, Oxford, 1994.

82. Christopher Strachey. An impossible program. Computer Journal, 7 (4): 313, 1965.
83. John R. Lucas. Minds, machines and Gödel. Philosophy, XXXVI: 112–127, 1961. Reprinted

in The Modeling of Mind, K. M. Sayre and F. J. Crosson, eds., Notre Dame Press, 1963, pp.
269–270. https://doi.org/10.1017/S0031819100057983

84. Arnon Avron. Mishpete Gedel u-ve‘ayat ha-yesodot shel ha-matematikah (= Gödel’s Theo-
rems and the Problem of the Foundations of Mathematics). Broadcast University, Ministry of
Defence, Jerusalem, Israel, 1998. In Hebrew.

85. David Chalmers, editor. Symposium on Roger Penrose’s Shadows of the Mind, volume 2,
1995. Association for the Scientific Study of Consciousness. URL http://journalpsyche.org/
files/0xaa25.pdf.

86. Geoffrey LaForte, Patrick J. Hayes, andKennethM. Ford.WhyGödel’s theorem cannot refute
computationalism. Artificial Intelligence, 104 (1–2): 265–286, 1998.

87. NachumDershowitz. The four sons of Penrose. InProceedings 12th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR) (Montego Bay,
Jamaica), volume 3835 of Lecture Notes in Computer Science, pages 125–138. Springer,
December 2005.

88. Martin Davis. The Universal Computer: The Road from Leibniz to Turing. CRC Press, 3rd
edition, 2018.

89. Hilary Putnam.Book review: Shadows of theMind byRoger Penrose.Bulletin of the American
Mathematical Society, 32 (3): 370–373, July 1995.

90. John. C. Shepherdson. On the definition of computable function of a real variable. Zeitschrift
für mathematische Logik und Grundlagen der Mathematik (Mathematical Logic Quarterly),
22 (1): 391–402, 1976.

91. Oron Shagrir. Effective computation by humans and machines. Minds and Machines, 12:
221–240, 2002.

92. Wilfried Sieg and John Byrnes. An abstract model for parallel computations: Gandy’s thesis.
The Monist, 82 (1): 150–164, 1999.

93. Olivier Bournez, Nachum Dershowitz, and Pierre Néron. An axiomatization of analog algo-
rithms. In Computability in Europe 2016: Pursuit of the Universal (CiE, Paris, France),
volume 9709 of Lecture Notes in Computer Science, pages 215–224, Switzerland, June 2016.
Springer. URL http://nachum.org/papers/AxiomatizationAnalog.pdf. Full version at https://
arxiv.org/pdf/1604.04295v2.pdf.

94. Jack B. Copeland and Oron Shagrir. Physical computation: How general are Gandy’s princi-
ples for mechanisms?Minds and Machines, 17 (2): 217–231, 2007.

https://doi.org/10.1017/S0031819100057983
http://journalpsyche.org/files/0xaa25.pdf
http://journalpsyche.org/files/0xaa25.pdf
http://nachum.org/papers/AxiomatizationAnalog.pdf
https://arxiv.org/pdf/1604.04295v2.pdf
https://arxiv.org/pdf/1604.04295v2.pdf


232 U. Boker and N. Dershowitz

95. Pablo Arrighi and Gilles Dowek. The physical Church-Turing thesis and the principles of
quantum theory. International Journal of Foundations of Computer Science, 23 (5): 1131–
1145, 2012.

96. Tien D. Kieu. Quantum algorithm for Hilbert’s Tenth Problem. International Journal of The-
oretical Physics, 42: 1461–1478, 2003.

97. Pablo Arrighi and Gilles Dowek. The principle of a finite density of information. In H. Zenil,
editor, Irreducibility and Computational Equivalence, volume 2 of Emergence, Complexity
and Computation, pages 127–134. Springer, Berlin, 2013.

98. David Beckman, Daniel Gottesman, Michael A. Nielsen, and John Preskill. Causal and local-
izable quantum operations. Phys. Rev. A, 64, 2001.

99. Benjamin Schumacher and Michael D. Westmoreland. Locality and information transfer in
quantum operations. Quantum Information Processing, 4 (1): 13–34, 2005.

100. Apostolos Syropoulos. Hypercomputation: Computing Beyond the Church-Turing Barrier.
Springer Science & Business Media, 2008.

101. Selmer Bringsjord and David A. Ferrucci. The narrative-based refutation of Church’s thesis.
In Artificial Intelligence and Literary Creativity: Inside the Mind of BRUTUS, a Storytelling
Machine, chapter 5, pages 105–148. Lawrence Erlbaum, Mahwah, NJ, 2000.

102. Selmer Bringsjord, Owen Kellett, Andrew Shilliday, Joshua Taylor, Bram van Heuveln, Yin-
grui Yang, Jeffrey Baumes, and Kyle Ross. A new Gödelian argument for hypercomputing
minds based on the Busy Beaver problem. Applied Mathematics and Computation, 176 (2):
516–530, 2006.

103. OwenKellett. Amulti-faceted attack on the Busy Beaver problem.Master’s thesis, Rensselaer
Polytechnic Institute, Troy, New York, July 2005.

104. Selmer Bringsjord and Michale Zenzen. Superminds: People Harness Hypercomputation,
and More, volume 29 of Studies in Cognitive Systems. Kluwer Academic, Dordrecht, The
Netherlands, 2003.

105. Warren Page. An interview with Herbert Robbins. The Two-Year College Mathematics Jour-
nal, 15 (1): 2–24, 1984.

106. Mario Stipčević and Çetin Kaya Koç. True random number generators. In Çetin Kaya Koç,
editor,Open Problems in Mathematics and Computational Science, pages 275–315. Springer
International Publishing, 2014.

107. G. LeeBowie. An argument against Church’s thesis.The Journal of Philosophy, 70 (3): 66–76,
1973.

108. Cristian S. Calude. Algorithmic randomness, quantum physics, and incompleteness. In Pro-
ceedings of the Conference on Machines, Computations and Universality (MCU 2004), vol-
ume 3354, pages 1–17, september 2004.

109. David Deutsch. Quantum theory, the Church-Turing principle and the universal quantum
computer. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 400: 97–117, 1985.

110. John Gill. Computational complexity of probabilistic Turing machines. SIAM Journal on
Computing, 6 (4): 675–695, 1977.

111. Karl de Leeuw, Edward F.Moore, Claude E. Shannon, andNorman Shapiro. Computability by
probabilistic machines. In Claude E. Shannon and JohnMcCarthy, editors, Automata Studies,
volume 34 of Annals of Mathematics Studies, pages 183–212. Princeton University Press,
1956.

112. Yuri Gurevich. Unconstrained Church-Turing thesis cannot possibly be true. Bull. EATCS,
127, 2019. URL http://bulletin.eatcs.org/index.php/beatcs/article/view/566/565.

113. B. Jack Copeland. Accelerating Turing machines. Minds and Machines, 12 (2): 281–300,
2002.

114. E. Mark Gold. Limiting recursion. J. Symbolic Logic, 30 (1): 28–48, 1965.
115. Hilary Putnam. Trial and error predicates and the solution to a problem of Mostowski.

J. Symbolic Logic, 30 (1): 49–57, 1965.
116. HermannWeyl. Philosophy of Mathematics and Natural Science. Princeton University Press,

1949.

http://bulletin.eatcs.org/index.php/beatcs/article/view/566/565


9 What is the Church-Turing Thesis? 233

117. AdolfGrünbaum.Messrs. Black andTaylor on temporal paradoxes.Analysis, 12 (6): 144–148,
1952. URL http://www.jstor.org/stable/3326977.

118. GáborEtesi and IstvánNémeti.Non-Turing computations viaMalament-Hogarth space-times.
International Journal of Theoretical Physics, 41 (2): 341–370, 2002.

119. Mark L. Hogarth. Non-Turing computers and non-Turing computability. In Proceedings of
the Philosophy of Science Association, volume 1994, pages 126–138, 1994.

120. Mark L. Hogarth. Does general relativity allow an observer to view an eternity in a finite
time? Foundations of Physics Letters, 5 (2): 173–181, 1992.

121. Itamar Pitowsky. The physical Church thesis and physical computational complexity. Iyyun:
The Jerusalem Philosophical Quarterly, 39: 81–99, 1990.

122. Oron Shagrir and Itamar Pitowsky. Physical hypercomputation and the Church-Turing thesis.
Minds and Machines, 13 (1): 87–101, 2003.

123. John Earman and John D. Norton. Forever is a day: Supertasks in Pitowsky and Malament-
Hogarth spacetimes. Philosophy of Science, 60 (1): 22–42, 1993.

124. Antony Galton. The Church-Turing thesis: Still valid after all these years? Applied Mathe-
matics and Computation, 178: 93–102, 2006.

125. PaoloCotogno.Hypercomputation and the physical Church-Turing thesis.TheBritish Journal
for the Philosophy of Science, 54 (2): 181–223, 2003.

126. Fred G. Abramson. Effective computation over the real numbers. In 12th Annual Symposium
on Switching and Automata Theory (SWAT 1971), pages 33–37, 1971.

127. Jean-Claude. Carréga. Théorie des corps - La règle et le compas. Hermann, Paris, 1981.
128. Pascal Schreck. On the mechanization of straightedge and compass constructions. Journal of

Systems Science and Complexity, 32: 124–149, February 2019.
129. Jesper Lützen. Why was Wantzel overlooked for a century? The changing importance of an

impossibility result. Historia Mathematica, 36 (4): 374–394, 2009.
130. Arnon Avron. Personal communication, 2020.
131. Hava T. Siegelmann. Neural Networks and Analog Computation: Beyond the Turing Limit.

Birkhäuser, Boston, 1998.
132. Paul Cockshotta, LewisMackenzie, and GregMichaelson. Physical constraints on hypercom-

putation. Theoretical Computer Science, 394: 159–174, 2008.
133. Cristian S. Calude and Boris Pavlov. Coins, quantum measurements, and Turing’s barrier.

Quantum Information Processing, 1 (1): 107–127, 2002.
134. Michael A. Nielsen. Computable functions, quantum measurements, and quantum dynamics.

Physical Review Letters, 79 (15): 2915–2918, 1997.
135. AndrewHodges.Can quantumcomputing solve classically unsolvable problems? arXiv, 2005.

URL http://arXiv.org/abs/quant-ph/0512248.
136. Warren D. Smith. Three counterexamples refuting Kieu’s plan for “quantum adiabatic hyper-

computation”; and some uncomputable quantummechanical tasks. Applied Mathematics and
Computation, 178 (1): 184–193, 2006. Special Issue on Hypercomputation.

137. Boris Tsirelson. The quantum algorithm of Kieu does not solve the Hilbert’s tenth problem.
arXiv, November 2001. URL http://arXiv.org/abs/quant-ph/0111009.

138. John W. Carroll. Laws of nature. In Edward N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab, Stanford University, fall 2016 edition, 2016. URL
https://plato.stanford.edu/archives/fall2016/entries/laws-of-nature.

139. George Kreisel. Mathematical logic: What has it done for the philosophy of mathematics? In
Ralph Schoenman, editor, Bertrand Russell: Philosopher of the Century. George Allen and
Unwin, London, 1967.

140. Robert Black. Proving Church’s Thesis. Philosophia Mathematica, 8 (3): 244–258, October
2000.

http://www.jstor.org/stable/3326977
http://arXiv.org/abs/quant-ph/0512248
https://plato.stanford.edu/archives/fall2016/entries/laws-of-nature


234 U. Boker and N. Dershowitz

Udi Boker is Professor of Computer Science at the Reichman University Herzliya, Israel. He spe-
cializes in logic, formal verification, computational models, game theory, and automata theory. He
received his Ph.D. in computer science from the Tel Aviv University, and did postdoctoral research
in the Hebrew University and in the Institute of Science and Technology (IST) Austria. Prior to
joining the academy, he served as an R&D Director in the high-tech company Mercury Interactive,
initiating and leading the area of load-testing over the Internet.

Nachum Dershowitz is Professor Emeritus of Computer Science and incumbent of the Chair in
Computational Logic at Tel Aviv University. His graduate degrees in applied mathematics are
from the Weizmann Institute in Israel. He is an international authority on program verification
and equational reasoning and has made major contributions to the computer analysis of historical
manuscripts. He has authored or coauthored 200 research papers and several books, held visit-
ing positions at prominent institutions around the globe, was elected to Academia Europaea, and
has won numerous awards for research and teaching, including the Herbrand Award for Distin-
guished Contributions to Automated Reasoning, several “test of time” awards for past research,
and the Choice Outstanding Academic Title Award for his book, Calendrical Calculations, with
Ed Reingold, now in its fourth edition (Cambridge University Press, 2018).


	9 What is the Church-Turing Thesis?
	9.1 Introduction
	9.2 What Is Computed?
	9.3 How Is It Computed?
	9.4 What Can Be Proved?
	9.4.1 Against Provability
	9.4.2 In Favour of Provability
	9.4.3 What Does It Mean to Disprove the Thesis?

	9.5 The Mathematical Thesis
	9.5.1 Non-empirical Arguments in Favour of the Thesis
	9.5.2 Disproving the Thesis

	9.6 The Physical Thesis
	9.6.1 Proving the Thesis
	9.6.2 Disproving the Thesis

	9.7 Conclusion
	References


