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Abstract. Choices made by nondeterministic word automata depend on both the
past (the prefix of the word read so far) and the future (the suffix yet to be read).
In several applications, most notably synthesis, the future is diverse or unknown,
leading to algorithms that are based on deterministic automata. Hoping to retain
some of the advantages of nondeterministic automata, researchers have studied
restricted classes of nondeterministic automata. Three such classes are nondeter-
ministic automata that are good for trees (GFT; i.e., ones that can be expanded
to tree automata accepting the derived tree languages, thus whose choices should
satisfy diverse futures), good for games (GFG; i.e., ones whose choices depend
only on the past), and determinizable by pruning (DBP; i.e., ones that embody
equivalent deterministic automata). The theoretical properties and relative merits
of the different classes are still open, having vagueness on whether they really dif-
fer from deterministic automata. In particular, while DBP C GFG C GFT, it is not
known whether every GFT automaton is GFG and whether every GFG automa-
ton is DBP. Also open is the possible succinctness of GFG and GFT automata
compared to deterministic automata. We study these problems for w-regular au-
tomata with all common acceptance conditions. We show that GFT=GFGDDBP,
and describe a determinization construction for GFG automata.

1 Introduction

Nondeterminism is very significant in word automata: it allows for exponential suc-
cinctness [15] and in some cases, such as Biichi automata, it also increases the expres-
sive power [10]. In the automata-theoretic approach to formal verification, temporal
logic formulas are translated to nondeterministic word automata [17]. In some applica-
tions, such as model checking, algorithms can proceed on the nondeterministic automa-
ton, whereas in other applications, such as synthesis and control, they cannot. There,
the advantages of nondeterminism are lost, and the algorithms involve a complicated
determinization construction [16] or acrobatics for circumventing determinization [9].

To see the inherent difficulty of using nondeterminism in synthesis, let us review
the current approach for solving the synthesis problem, going through games [4]. Let
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L be a language of infinite words over an alphabet 2/%©, where I and O are sets of

input and output signals, respectively. The synthesis problem for L is to build a reactive
system that outputs signals from 2° upon receiving input signals from 27, such that the
generated sequence (an infinite word over the alphabet 2/Y©) is in L [13]. The problem
is solved by taking a deterministic automaton D for L and conducting a two-player
game on top of it. The players, “system” and “environment”, generate words over 2/VC,
where in each turn the environment first chooses the 2/ component of the next letter,
the system responds with the 2© component, and D moves to the successor state. The
goal of the system is to generate an accepting run of D no matter which sequence of
input assignments is generated by the environment. The system has a winning strategy
iff the language L can be synthesized.

Now, if one tries to replace D with a nondeterministic automaton A for L, the
system should also choose a transition to proceed with. Then, it might be that L is
synthesizable and still the system has no winning strategy, as each choice of X' may
“cover” a strict subset of the possible futures.

Some nondeterministic automata are, however, good for games: in these automata
it is possible to resolve the nondeterminism in a way that only depends on the past
and still accepts all the words in the language. This notion, of good for games (GFG)
automata was first introduced in [6].! Formally, a nondeterministic automaton over the
alphabet Y is GFG if there is a strategy that maps each word x € X* to the transition
to be taken after x is read. Note that a state ¢ of the automaton may be reachable via
different words, and the strategy may suggest different transitions from ¢ after different
words are read. Still, the strategy depends only on the past, meaning on the word read
so far. Obviously, there exist GFG automata: deterministic ones, or nondeterministic
ones that are determinizable by pruning (DBP); that is, ones that just add transitions on
top of a deterministic automaton. In fact, these are the only examples known so far of
GFG automata. > A natural question is whether all GFG automata are DBP.

More generally, a central question is what role nondeterminism can play in automata
used for games, or abstractly put, in cases that the future is unknown. Specifically, can
such nondeterminism add expressive power? Can it contribute to succinctness? Is it
“real” or must it embody a deterministic choice?

Before addressing these questions, one should consider their tight connection to
nondeterminism in tree automata for derived languages [8]: A nondeterministic word
automaton A with language L is good for trees (GFT) if, when expanding its transition
function to get a symmetric tree automaton, it recognizes the derived language, denoted
der(L), of L; that is, all trees all of whose branches are in L [8]. Tree automata for
derived languages were used for solving the synthesis problem [13] and are used when
translating branching temporal logics such as CTL* to tree automata [3]. Analogously
to GFG automata, the problem in using nondeterminism in GFT automata stems from
the need to satisfy different futures (the different branches in the tree). For example,

' GFGness is also used in [2] in the framework of cost functions under the name “history-
determinism”.

2 As explained in [6], the fact the GFG automata constructed there are DBP does not contradict
their usefulness in practice, as their transition relation is simpler than the one of the embodied
deterministic automaton and it can be defined symbolically.



solving the synthesis problem, the branches of the tree correspond to the possible input
sequences, and when the automaton makes a guess, the guess has to be successful for
all input sequences. The main difference between GFG and GFT is that the former can
only use the past, whereas the latter can possibly take advantage of the future, except
that the future is diverse.

A principal question is whether GFG and GFT automata are the same, meaning
whether nondeterminism can take some advantage of a diverse future, or is it the same
as only considering the past.

It is not difficult to answer all the above questions for safety languages; that is, when
the language L = L(A) C X is such that all the words in L can be arranged in one
tree. Then, a memoryless accepting run of .4 (that is, its expansion to a symmetric tree
automaton for der(L)) on this tree induces a deterministic automaton embodied in A4,
meaning that A is DBP. Moving to general w-regular languages, the first question, con-
cerning expressiveness of deterministic versus GFT automata, was answered in [8] with
respect to Biichi automata, and in [12] with respect to all levels of the Mostowski hier-
archy. It is shown in these works that if der(L) can be recognized by a nondeterministic
Biichi tree automaton, then L can be recognized by a deterministic Biichi word automa-
ton, and similarly for parity conditions of a particular index. Thus, nondeterminism in
the presence of unknown or diverse future does not add expressive power. The other
questions, however, are open since the 90s.

In this paper we examine these questions further for automata with all common
acceptance conditions. We first show that a Muller automaton is GFG iff it is GFT.
As the Muller condition can describe all the common acceptance conditions (Biichi,
co-Biichi, parity, Streett, and Rabin), the result follows to all of them. Intuitively, a
GFT automaton A (or, equivalently, a nondeterministic tree automaton for a derived
language) is limited in using information about the future, as different branches of the
tree challenge it with different futures. Formally, we prove that A is GFG by using
determinacy of a well-chosen game. The same game allows us to show that there is a
deterministic automaton for L(.A) with the same acceptance condition as .A. This also
simplifies the result of [12] and generalizes it to Muller conditions. Indeed, the proof in
[12] is based on intricate arguments that heavily rely on the structure of parity condition.

Can GFG automata take some advantage of nondeterminism or do they simply hide
determinism? We show the existence of GFG Biichi and co-Biichi automata that use
the past in order to make decisions, and thus cannot have a memoryless strategy. Note
that we use the basic acceptance conditions for these counter examples, thus the result
follows to all common acceptance conditions. This is different from known results on
GFG automata over finite words or weak GFG automata, where GFG automata are DBP
[8, 11]. This result is quite surprising, as strategies in parity games are memoryless. We
further build a GFG automaton that cannot be pruned into a deterministic automaton
even with a finite unbounded look-ahead, meaning that even an unbounded yet finite
view of the future cannot compensate on memorylessness.

Regarding succinctness, the currently known upper bound for the state blowup in-
volved in determinizing a GFG parity automaton is exponential [8], with no nontrivial
lower bound. We provide some insights on GFG automata, showing that in some cases
its determinization is efficient. We show that if .4 and B are GFG Rabin automata that



recognize a language L and its complement, then there is a deterministic Rabin au-
tomaton for L of size |A x B|. Thus, in the context of GFG automata, determinization
is essentially the same problem as complementation. Moreover, our construction shows
that determinization cannot induce an exponential blowup both for an automaton and its
complement. This is in contrast with standard nondeterminism, even over finite words.
For example, both the language Ly, = (a+b)*a(a+b)* and its complement admit non-
deterministic automata that are linear in k, while the deterministic ones are exponential
in k.

Due to lack of space, some proofs are omitted, or shortened, and can be found in
the full version.

2 Preliminaries

2.1 Trees and Labeled Trees

We consider trees over a set DD of directions. A tree T is a prefix-closed subset of 7 =
D*. We refer to T as the complete D-tree. The elements in T are called nodes, and € is
the root of T'. For anode u € D* and d € D, the node ud is the child of u with direction
d. A pathof T'isaset® C T, such that € € 7 and for all u € T, there is a unique d € D
with ud € 7. Note that each path 7 corresponds to an infinite word in D“.

For an alphabet X/, a X'-labeled D-tree is a D-tree in which each edge is labeled by a
letter from /. We choose to label edges instead of nodes in order to be able to compose
a set of words into a single tree, even when the set contains words that do not agree on
their first letter. Formally, a >'-labeled D-tree is a pair (T',¢) where T C T is a D-tree
andt: T\ {e} — X labels each edge (or equivalently its target node) by a letter in X
Let Tp,x be the set of X-labeled D-trees (not necessarily complete). We say that a word
w € X¥is abranch of atree (T, t) € Tp 5 if there is a path m = {e, u1,u2,...} CT
such that w = t(7) = t(u1)t(usg) ... We use branches({T,t)) to denote the set of
branches of (T',t). Note that branches({T,t)) is a subset of X*.

2.2 Automata

Automata on words An automaton on infinite words is a tuple A = (X, Q, qo, 4, o),
where Y is the input alphabet, () is a finite set of states, go € @ is an (for simplicity,
single) initial state, A C @ x X x @ is a transition relation such that (g, a,¢’) € A if
the automaton in state ¢, reading a, can move to state ¢’. The state gg € Q is the initial
state, and « is an acceptance condition. Here we will use Biichi, co-Biichi, parity, Rabin,
Streett and Muller automata. In a Biichi (resp. co-Biichi) conditions, o C (@ is a set of
accepting (resp. rejecting) states. In a parity condition of index [, j], the acceptance
condition « : Q — [, j] is a function mapping each state to its priority (we use [¢, j] to
denote the set {i,i + 1,...,7}). In a Rabin (resp. Streett) condition, o C 229%x2% g o
set of pairs of sets of states, and in a Muller condition, o C 227 is a set of sets of states.

Since the transition relation may specify many possible transitions for each state and
letter, the automaton .4 may be nondeterministic. If A is such that for every ¢ € ) and
a € X, there is a single state ¢’ € @Q such that (g, a,q’) € A, then A is a deterministic
automaton.



Given an input word w = ag-ay - - - in X*, arun of Aonwis a functionr : N — @
where 7(0) = ¢o and for every ¢ > 0, we have (r(i),a;,r(i + 1)) € A; i.e., the run
starts in the initial state and obeys the transition function. For a run r, let inf(r) denote
the set of states that r visits infinitely often. That is, inf(r) = {¢ € Q : for infinitely
many ¢ > 0, we have (i) = ¢}. The run r is accepting iff

— inf(r) N« # O, for a Biichi condition.

— inf(r) N a = 0, for a co-Biichi condition.

- max{a(q) : g € inf(r)} is even, for a parity condition.

— there exists (F, F') € a, such that inf(r) N E = 0 and inf(r) N F' # {) for a Rabin
condition.

- for all (E,F) € a, we have inf(r) N E # 0 or inf(r) N F # @ for a Streett
condition.

- inf(r) € a for a Muller condition.

Note that Biichi and co-Biichi are dual, as well as Rabin and Streett. Parity and
Muller are self-dual. Also note that Biichi and co-Biichi are a special case of parity,
which is a special case of Rabin and Streett, which in turn are special cases of the Muller
condition. An automaton A accepts an input word w iff there exists an accepting run of
A on w. The language of A, denoted L(.A), is the set of all words in X that A accepts.

Automata on trees An automaton on X-labeled D-trees is atuple A = (X, D, Q, qo, 4, @),
where X, @, qo, and « are as in automata on words, and A C @ x (X x Q)D. Recall
that we label the edges of the input trees. Accordingly, (g, (a4, qq)dep) € A if the au-
tomaton in state g, reading for each d € ID the letter a4 in direction d, can send a copy
in g4 to the child in direction d. If for all ¢ € @ and (ag)4ep € X7, there is a single
tuple (¢q)dep such that (q, (a4, q4)dep) € A , then A is deterministic.

A run of A on a X-labeled tree (T, t) is a function r : T — @ such that r(g) = qq
and for all u € T, we have that (r(u), (t(ud), r(ud))gep) € A. If for some directions
d, the nodes ud are not in ', we assume that the requirement on them is satisfied. A
run 7 on a tree 7' is accepting if the acceptance condition of the automaton is satisfied
on all infinite paths of (T, r). For instance when .4 is a Biichi automaton, the run r
is accepting if on all infinite paths in 7" it visits « infinitely often. As in automata on
words, a tree (T, t) is accepted by A if there exists an accepting run of .4 on (T, t), and
the language of A, denoted L(.A), is the set of all trees in 7p_x; that A accepts.

We use three letter acronyms in {D, N} x {F, B, C,P, R, S, M} x {W, T} to denote
classes of automata, with the first letter indicating whether this is a deterministic or
nondeterministic automaton, the second whether it is an automaton on finite words or
a Biichi / co-Biichi / parity / Rabin / Streett / Muller automaton, and the third whether
it runs on words or trees. For example, a DBW is a deterministic Biichi automaton on
infinite words.

2.3 Between Deterministic and Nondeterministic Automata

Let L C X“ be a language of infinite words. We define the derived language of L,
denoted der(L), as the set of X-labeled D-trees all of whose branches are in L. Note
that the definition has ID as a parameter.



Since membership of a tree (7, t) in der(L) only depends on branches({T,t)), we
do not lose generality if we consider, in the context of derivable languages, trees in a
normal form in which D = X and labels agree with directions. We note that examining
trees for which |D| < || introduces an extra assumption on the set of possible futures,
of which a nondeterministic automaton may take advantage.

Formally, we say that a X-labeled D-tree (T, ¢) is in a normal form if ¥ = D,
and for all ua € X, we have t(ua) = a. Clearly, each Y-labeled D-tree (7', t) has
a unique X-labeled Y-tree (7”,¢') in a normal form such that branches({T,t)) =
branches({T",t')). Working with trees in a normal form enables us to identify the
domain 7" with its labeling ¢. Thus, from now on we refer to a XY-tree ', with the
understanding that we talk about the unique X'-labeled X'-tree in normal form that
has T as its underlying X-tree. For a X-tree T', the branch associated with a path
{€,d1,d1da, d1dads, . . .} is the infinite word d;dads - - - .The tree automata we consider
also have D = X' (and we omit D from the specification of the automaton).

Consider a nondeterministic word automaton A = (X, Q, qo, 4, ). Let A; be the
expansion of A to a tree automaton. Recall that we restrict attention to automata with
D = X. That is, Ay = (X, Q, qo, A¢, ) is such that for every (q, (aq,qd)dcs) €
Q x (X x Q)*, we have that (q, (a4,qq)aes) € A, iff for all d € X, there is a
transition (g, aq, q4) is in A. We say that A is good for trees (GFT, for short), if L(A;) =
der(L(A)).

It is easy to see that when A is deterministic, then A is GFT. Indeed, .A; only accepts
trees in der(L(.A)), so L(A;) C der(L(.A)). Conversely, since each prefix of a word in
X% corresponds to a single prefix of a run of .4, we can compose the accepting runs of
A of the words in L(.A) to an accepting run on A; on every tree in der(L(.A)).

General nondeterministic automata are not GFT. For example, let A = ({a, b}, {40, ¢1},
0, {(q0, @, q0) (90, b, q0), (0> @, q1), (q1,a,q1) }, {1 }) be the canonical NBW recog-
nizing L = (a+b)*a*. Then, A; cannot accept the tree T' = a*Ua*ba*. Indeed, A; has
to move to ¢; at some point on the a* branch, but it then fails to accept other branches
from that point, as there is no transition leaving ¢; labeled with b. In fact no NBT can
recognize der(L(.A)) [14].

A nondeterministic word automaton A = (¥, Q, qo, 4, &) is good for games (GFG,
for short) if there is a strategy o : X* — () such that the following hold: (1) The strategy
o is compatible with A. That s, for all (u,a) € X* x X, we have (o(u), a,o(ua)) € A.
(2) The restriction imposed by o does not exclude words from L(.A); that is, for all
u = ug - uy - ug, - € L(A), the sequence o(g), o(ug), o(ugur), o(uguiug),. ..
satisfies the acceptance condition a.

Finally, X' is determinizable by pruning (DBP, for short) if it can be determinized to
an equivalent automaton by removing some of its transitions.

A DBP automaton is obviously also GFG, using the strategy that follows the un-
pruned transitions. A GFG automaton is also GFT, as the latter can resolve its non-
determinism using the strategy that witnesses the GFGness.

Proposition 1. If an automaton A is DBP, then it is GFG. If A is GFG then A is GFT.

Let A = (X,Q,qo, 4, a) be a tree automaton. The word automaton associated
with Ais A, = (¥, Q,q, Aw, ), where A, is such that (q,a,q’) € A, iff A



has a transition from ¢ in which ¢’ is sent to some direction along an edge labeled a.
Formally, there is a transition (g, (a4, ga)acx) € A with (aq4,q4) = (a,q’) for some
d € X. It is easy to see that 4,, accepts exactly all infinite words that appear as a
branch of some tree accepted by A. Note that if L(A) = der(L), then L(A,,) = L, and
L((Ay),) = der(L), so A, is GFT.

3 From GFT to GFG

In this section we prove that if an NMW is GFT then it is also GFG. In addition,
we show that GFG automata admit finite memory strategies and we study connections
with [12].

The crucial tool in the proof is the following infinite-duration perfect-information
game between two players 3 and V. Let A = (D, Q*, ¢7*, A4, o) be an arbitrary
NMW. Let D = (D, QP,qP, AP, aP) be a DSW recognizing L(A). The arena of
the game G(A) is @ x QP and its initial position (gg, po) is the pair of initial states
(¢7',4P). In the i-th round of a play, ¥ chooses a letter d; € I and 3 chooses a state
qi+1 such that (g;, d;, qi11) € A*. The successive position is (g; 41, pis+1), where p; 41
is the unique state of D such that (p;, d;, p;41) € AP.

An infinite play IT = ({qo, po), do), ({¢1,p1),d1), - .. is won by 3 if either the run
II 4 := (¢i);cy s accepting or the run I1p := (p;),cy is rejecting. Note that since D
recognizes L(.A), it follows that ITp is rejecting iff IIp := (d;), .y does not belong to
L(A).

Since the game is w-regular, it admits finite-memory winning strategies. The win-
ning condition for 3 in G(.A) is the disjunction of a* with the Rabin condition that is
dual to o In particular, when A is an NRW, then the winning condition is a Rabin
condition, thus if 3 has a winning strategy in G(.A), she also has a memoryless one.

Obviously, a strategy for 3 is a strategy for resolving the nondeterminism in A.
Hence, we have the following.

i€N

Lemma 1. If 3 has a winning strategy in G(A) then A is GFG. Additionally, there
exists a finite-memory strategy o witnessing its GFGness. If A is an NRW (NMW), then
o is at most exponential (resp. doubly exponential) in the size of A.

Lemma 2. IfV has a winning strategy in G(A), then A is not GFT.

Proof Letoy: (Q*)*t — D be a winning strategy of V in G(.A). Thus, for a sequence
q of states, namely the history of the game so far, the strategy oy assigns the letter
to be played by V. Note that for some sequences q € (QA)+, the value oy(q) is set
arbitrarily, as there is no play corresponding to such a sequence (e.g., if gy # q}“).

Letu € D* be a word and ¢ = (qo,---,q;—1) € (Q*)T be a sequence of states.
We say that g forces u if (g, u) is a prefix of a play in G(.A) in which V plays according
to the strategy o. Formally, g forces w if the following hold: (1) |u| = |q| = j > 0, (2)
qo = g7\, (3) for every i < j — 1, the tuple (g;,u(), gi+1) is a transition of 4, and (4)
for every i < j, the letter u(¢) equals ov(qo - - - ¢;)-

Let T' C D* be the set of words v € ID* such that there is a sequence q € (QA)*
that forces u. Note that 7" is prefix-closed, so it is a [D-branching tree. We first show



that T € der(L(A)). Consider an infinite path 7 of T. Let m = {€, u1, ua, ...} and let
(gi);~ be sequences q; € (QA)* such that g; forces u;. Note that |q;| = |u;| = .
Since there are finitely many states in A, there exists a subsequence of (g;),- that is
pointwise convergent to a limit p € (Q*)*. For instance, this sequence can be built by
iteratively choosing states that appear in infinitely many of the g;. For a finite or infinite
sequence of states g and an index j € N, let g; be the prefix of g of length j. It follows
that for every j € N there exists i > 0 such that p; = (q;));.

Let IT be the play that is the outcome of V playing oy and 3 playing successive
states of p. By the above, for every j € N, we have (p(j),7(j), p(j + 1)) € AA.
Therefore, the play I7 is well defined, IIp = m, and IT4 = p. Since oy is a winning
strategy, IIp is accepting, and therefore m € L(.A). Since we showed the above for all
paths 7 of T', we conclude that 7' € der(L(A)).

Assume now, by way of contradiction, that A is GFT. Thus, L(A;) = der(L(A)).
Since T' € der(L(.A)), there is an accepting run p; of A; on T. Let IT be the infinite
play of G(.A) that is the outcome of V playing oy and 3 playing transitions of p;: if ¥
played v € DT, then 3 plays p;(u). Since p; is accepting, IT 4 is also accepting, and 3
wins I7, contradicting the fact that V plays his winning strategy. a

Observe that the arena of the game G(A) is finite and the winning condition for
3 is w-regular. Thus, the game is determined (see [1,4]) and one of the conditions in
Lemma 1 or 2 holds. Hence A is either GFG or not GFT, and we can conclude with the
following:

Theorem 1. If an NMW is GFT then it is GFG. Moreover, there exists a finite-memory
strategy o witnessing its GFGness. If A is an NRW (NMW), then o is at most exponen-
tial (resp. doubly exponential) in the size of A.

The following observation can be seen as an extension of [12] from parity condi-
tion to general Muller acceptance conditions. The only difference here is that we work
with X-labelled D-trees with [D| > |X|, while [12] was working on binary trees with
arbitrary alphabets. Again, we believe that these differences in the formalisms do not
reflect essential behaviors of automata on infinite trees, since a simple encoding always
allows to go from one formalism to another. Notice that the proof in [12] relies crucially
on the structure of parity conditions and does not seem to generalize to arbitrary Muller
conditions. In the following statement we use 7y to denote an acceptance condition, e.g.
a parity [¢, j] condition, a Rabin condition with & pairs, a Muller condition with k sets,
etc.

Corollary 1. Consider an w-regular word language L. If der(L) can be recognized by
a nondeterministic vy tree automaton, then L can be recognized by a deterministic
word automaton.

Proof. The word automaton A,, = (D, Q, g5, A, «) associated with A is GFT, so by
Theorem 1 it is GFG. By Theorem 1, the fact that A,, is GFG is witnessed by a strategy
o, using a finite memory structure M with an initial state mo € M. That is to say,
0:Q xMxD— @ x M can be used to guide choices in 4,,, ensuring that all words
in L are accepted. Therefore, we can build the required deterministic automaton D with



states Q X M, where the transition function maps a state (g, m) and letter d € D to
the state o(q, m,d). The acceptance condition of D is identical to «, and needs only
to consider the (Q-components of the states (the M component does not play a role for
acceptance), and is thus of type ~. Since an accepting run of D induces an accepting
run of A,,, we have L(D) C L. Conversely, if 7 is a word in L, the unique run of D
on 7 corresponds to the execution of the GFG strategy o in A, and it thus accepting.
Hence, L(D) = L, for the deterministic v automaton D.

O

Observe that since deterministic automata are clearly GFT, the other direction of
Corollary 1 is trivial.

4 From GFG to Deterministic Automata

In this section we study determinization of GFG automata. As discussed in Section 2,
every DBP automaton (that is, a nondeterministic automaton that is determinizable by
pruning) is GFG. The first question we consider is whether the converse is also valid,
thus whether every GFG is DBP. We show that, surprisingly, not all GFG Biichi and co-
Biichi automata are DBP. Note that since these counter examples are with basic accep-
tance conditions, the result follows for all common acceptance conditions. This gives
rise to a second question, of the blow-up involved in determinizing GFG NRWs. We
describe a determinization construction that generates a DRW whose size is bounded
by the product of the input GFG NRW and a GFG NRW for its complement.

4.1 GFG Biichi and co-Biichi Automata are not DBP

There is a strong intuition that a GFG NBW can be determinized by pruning: By def-
inition, the choices of a GFG NBW are independent on the future. Accordingly, the
question about GFG NBWs being DBP amounts to asking whether the choices are in-
dependent of the past. Since Biichi games are memoryless, it is tempting to believe that
the answer is positive. A positive answer is also supported by the fact that GFG NBWs
that recognize safety languages are DBP. In addition, all GFG NBWs studied so far,
and in particular these constructed in [6] are DBP. Yet, as we show in this section, GFG
NBWs are not DBP.

We start with a simple meta-NBW that operates over infinite words composed of
two finite words (tokens), x and y. Afterwards, we formalize it to a GFG NBW. More-
over, we show that even more flexible versions of DBP, such as ones that allow the
“deterministic” automata to have finite look-ahead are not sufficient.

A meta example. The meta-NBW M, described in Figure 1, accepts exactly all words
that contain infinitely many ‘zz’s or ‘yy’s. That is, L(M) = [(z + y)*(zx + yy)]~.
It is not hard to see that M is GFG by using the following strategy in its single non-
deterministic state gg: “if the last token was x then go to g; else go to g5”. On the other
hand, determinizing gy to always choose ¢; loses y* and always choosing ¢, loses z*.
Hence, M is not DBP. 9



Fig. 1. A meta GFG NBW that is not DBP. Fig.2. A GFG NBW that is not DBP.

A concrete example. Using the above meta-NBW with x = aaa and y = aba provides
the NBW A, described in Figure 2, whose language is L = [(aaa + aba)*(aaa aaa +
aba aba)]“. Essentially, it follows from the simple observations that .4 has an infinite
run on a word w iff w € (aaa + aba)®. Also, after a prefix whose length divides by 3,
a run of A can only be in either g, p or g.

A co-Biichi example. In order to show that these counter examples are not specific to
the Biichi condition, we give another example of GFG which is not DBP, using the
co-Biichi condition. For simplicity, the acceptance is now specified via the transitions
instead of the states. Dashed transitions are co-Biichi, i.e. accepting runs must take them
only finitely often. (It is not hard to build a counter-example with co-Biichi condition

on states from this automaton.)
a
a /\/“\Q
)

N b
\
7

/7

\

Fig. 3. A co-Biichi automaton that recognizes the language (aa + ab)*[a® + (ab)*]. It is GFG
but not DBP. Note that unlike the Biichi counter-example, one good choice is enough for getting
an accepting run.

Theorem 2. GFG NPWs are not DBP, even for Biichi and co-Biichi conditions.

Proof. We prove that the NBW A from Figure 2 is GFG and is not DBP. First, the only
nondeterminism of A is in go. The following strategy, applied in gy, witnesses that A is
GFG: “if the last three letters were ‘aaa’ then go to g; else go to ¢g2”. Now, to see that A
is not DBP, recall that the only nondeterminism of A is in gg. Therefore, there are two
possible prunings to consider: the DBW A’ in which 6(qg,a) = ¢; and the DBW A"
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in which 6(qp,a) = ¢o. With the former, (aba)® € L(A) \ L(A’) and with the latter
(aaa)” € L(A) \ L(A"). O

While the GFG NBW A used in the proof of Theorem 2 is not DBP, it can be
determinized by merging the states ¢; and g, to which gg goes nondeterministically,
and then pruning. Furthermore, A is “almost deterministic”, in the sense that a look-
ahead of one letter into the future is sufficient for resolving its nondeterminism. One
may wonder whether GFG NBWs are determinizable with more flexible definitions of
pruning. We answer this to the negative, describing (in the full version) a GFG NBW
in which merging the target states of the nondeterminism cannot help, and no finite
look-ahead suffices for resolving the nondeterminism.

Theorem 3. There are GFG NBWs that cannot be pruned into deterministic automata
with unbounded yet finite look-ahead, or by merging concurrent target states.

4.2 A Determinization Construction

In this section, we show that determinization in the context of GFG automata cannot
induce an exponential blowup for both a language and its complement. This gives a
serious hint towards the fact that determinization is simpler in the case of GFG. Indeed,
for general nondeterministic automata, the blowup can occur on both sides. For exam-
ple, consider the family of languages of finite words Ly = (a + b)*a(a + b)*. While
for all £ > 1, both Ly, and its complement have nondeterministic automata with O (k)
states, a deterministic automaton for L;, must have at least 2* states.

We now assume that we have a Rabin GFG (NRW-GFG) automaton for L, and an
NRW-GFG for the complement comp(L) of L. We show the following.

Theorem 4. If A is an NRW-GFG for L with n states, and B is an NRW-GFG for
comp(L) with m states, then we can build a DRW for L with nm states.

Proof. Let A = (X, Q, qo, Aa, &) be an NRW-GFG for L, and B = (X, P, pg, A, B)
be an NRW-GFG for comp(L). We construct a Rabin game G between two players, 3
and V, as follows. The arena of G is the product A x B. Formally, the positions of the
game are pairs of states (¢,p) € Q x P, and there is an edge (q,p) — (¢’,p’) in G if
(g,a,q') € Aqand (p,a,p’) € Ap. The initial position of the game is (go, o).

A turn from position (p, q) is played as follows: First, V chooses a letter a in X.
Then, 3 chooses an edge (¢,p) — (q¢’,p’). The game then continues from (¢, p’).
Thus, the outcome of a play is an infinite sequence © = (qo, po), (41, 1), (42, P2), - - -
of positions. Note that = combines the run 74 = qo, q1, g2, - . . of A and the run 75 =
Po,P1,P2, ... of B.

The winning condition for 7 is that either 7 4 satisfies « or mp satisfies 5. These
objectives can be easily specified by a Rabin winning condition. It is easy to see that 3
has a winning strategy: it suffices to play in both automata according to their respecting
GFG strategies. By definition of GFG automata, if V generates a word v in L, the run
T 4 is accepting in A and thus satisfies «. Likewise, if u € comp(L), then the run 75 is
accepting in B and thus satisfies 3. Since every word is either in L or in comp(L), the
winning condition for 3 is always satisfied.
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It is known that Rabin games admit memoryless strategies [7]. Hence, 3 actually has
a memoryless winning strategy in G. Such a strategy maps each position (¢, p) € Q x P
and letter a € X' to a destination (¢’, p’). Hence, by keeping only edges used by the
memoryless strategy, we can prune the nondeterministic product automaton A x 5 into
a deterministic automaton that accepts all words in 2. Moreover, by simply forgetting
the acceptance condition of B, and keeping only the one from A, we get a DRW D
recognizing L. Notice that if .4 was for instance Biichi, or parity with index [¢, j], the
automaton D has the same acceptance condition. The number of states of D is | P x Q)|.
O
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A Proofs

A.1 Proof of Proposition 1

The first claim follows immediately from the fact a GFG strategy for a DBP automaton
can simply follow the transition that is not pruned. For the second claim, we prove that
L(A;) = der(L(.A)). First, since an accepting run of .A; on a tree T induces accepting
runs of A on all the branches of T, then clearly L(A;) C der(L(A)), for every word
automaton A. Conversely, if A is GFG with strategy o, then using o along all the
branches guarantees that every tree in der(L(.A)) is accepted by .A;. In particular, since
only the past is used in order to resolve the nondeterminism in .4, no conflict can occur.

A.2 Proof of Lemma 1

If A is Rabin, let o3 be a positional winning strategy for 3in G(.A) [7]. Such a strategy is
a function o5: Q4 x QP x D — @ that induces a function o : Dt — Q4 assigning
to each sequence of moves of V the state to be chosen by 3. Let us additionally put
o(e) = q}“. By the definition, o is computed by a deterministic transducer that uses
QA x QP as the memory structure. Note that if A is Rabin then D has size exponential
in the size of A. Similarly, if A is Muller then D is doubly-exponential in the number
of states of .4. What remains is to show that o is a witness of the fact that A is GFG.

Consider an infinite branch 7 € D* such that 7 € L(A). Let 7 = dy, d1,ds, . . ..
Consider the play II where 3 plays according to o3 and V chooses successive letters of
m (i.e. IIp = ). Observe that, by definition, for every ¢ € N we have that II,(i) =
o(do,ds,...,d;—1). Now, as the strategy o3 is winning for 3, then 3 wins in II. Also,
since m € L(.A) so ITp is accepting and the latter implies that I7, must be accepting.
Hence, o is a witness that A is GFG, and we are done.

A.3 The language of the NBW A described in Figure 2

We claim that the language of the NBW A is L = [(aaa+aba)*(aaa aaa+ aba aba)]®.
To see this, observe first that A has an infinite run on a word w if and only if w €
(aaa + aba)®. Also, after a prefix whose length divides by 3, a run of .A can only be in
either qg, p or g. For simplicity, when we speak of a position in a word we will mean a
position that divides by 3.

Now, consider a word w € L. A run of 4 on w may “choose” to i) be in gg before
an occurrence of aaa aaa + aba aba; ii) visit an accepting state at this occurrence; and
iii) return to qq after the occurrence. Since w must have infinitely many occurrences of
aaa aaa + aba aba, it follows that w € L(A).

As for the other direction, let r be an accepting run of .4 on a word w. Each (3-
letters) visit of r in an accepting state must start in gy and end in either p or g. Now,
going back to gg via p is only possible after an occurrence of aaa aaa and via g after an
occurrence of aba aba. Since r visits an accepting state infinitely often, it follows that
w has infinitely many occurrences of aaa aaa + aba aba. Hence, w € L.
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A.4 The NBW A described in Figure 2 is GFG

The only nondeterminism of A is in qo. Let AT denote the variant of A that uses the
following strategy in go: “if the last three letters were ‘aaa’ then go to ¢; else go to ¢2”.
We prove that L(A™) = L(A), which shows that A is GFG.

Consider a word w € L(A). By the characterization of L(A), the word w has
infinitely many occurrences of aaa aaa + aba aba. Now, by the structure and strategy
of A™, one can see that the following hold.

i. At each occurrence of aaa aaa + aba aba, the run of AT either visits an accepting
state or ends in .
ii. If the run of A™ is in qq at the beginning of an aaa aaa + aba aba occurrence, then
it visits an accepting state at this occurrence.
iii. The run of AT leaves gq (in a 3-dividable position) only if it visits an accepting
state.

By the above observations, we have that the run of A™ visits an accepting state at least
once per every couple of aaa aaa + aba aba occurrences. Hence, w € L(A™T).

A.5 GFG cannot be pruned into deterministic automata with look-ahead

In this section we describe an example of language satisfying the conditions in Theo-
rem 3, showing that GFG-NBWs cannot be pruned into deterministic automata with a
finite look-ahead.

A deterministic word automaton with k look-ahead, for a constant k € N, is A =
(X,Q,qo, A, ), defined as a deterministic automaton (see Section 2), except that its
transition relation is A C Q x X**1 x Q. For ¢,¢' € Q and v € X**!, a transition
(q,u,q') € A indicates that when the automaton is in state ¢ and reads the next k + 1
letters u, it moves to state ¢’. The automaton is deterministic, thus for all ¢ € @ and
u € X1 there is at most one state ¢’ such that (g, u,q') € A.

We show below that for every k& € N, the automaton C in Figure 4 cannot be pruned
into a deterministic automaton with &k look-ahead. In order to simplify the automaton’s
presentation, we make two notational shortcuts: i) We have acceptance on transitions,
the bold ones, rather than on states. Such an automaton can be translated to a standard
automaton, with acceptance on states, by making two copies of each state — the first
copy, which is not accepting, is reached by the non-accepting transitions, and the second
copy, which is accepting, is reached by the accepting transitions. ii) We gather a few
states in a block, for example the state p; and the one below it, and have outgoing
transitions from the whole block. This is simply a shortcut for having these outgoing
transitions from all the states in the block. For example, both p; and the state below it
go to g; upon reading the letter a and to ¢y upon reading b.

The automaton C extends the automaton .4 of Figure 2. As A, its only nondeter-
minism is in ¢g, upon reading the letter a. However, as opposed to A, merging the
target states of the nondeterminism (p; and po in C) results in changing the automaton’s
language. In addition, no bounded look-ahead into the future can help in resolving the
nondeterminism in ¢g.
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We explain below the behavior of C. Let x and y stand for the following regular
languages (over finite words): z = a (¢ + d)*a and y = a (¢ + d)* b. Then, C has the
following properties:

— Ithas an infinite run on a word w if and only if w € I = (z+y)“U(z+y)* (c+d)“.
— It accepts the language L = [; U Lo U L3, where
o Ly =[(x+y)*(zx + yy)]“. (Analogous to the language of A in Figure 2.)
e Ly =1N[X*(cc+ dd)]”. (Using doubles of cc’s or dd’s.)
o Ly=[(x+y) (ad(cd)* a+ ac(dec)* b)]~.
The last segment of the language, L3, is when we eventually don’t have any
doubles (zx/yy/cc/dd). Having only ¢+ d or only x + y cannot do. Yet, there
is a combination that works. From the x/y aspect, the automaton is either stuck
in qp or in ¢ and ¢-. In both cases, the only language that allows infinite many
visits in ¢/d accepting transitions is Lg.

As opposed to the simpler automaton A of Figure 2, merging the target states of
the nondeterminism, p; and po, results in extending the automaton’s language: it will
accept the word a(cd)®, which is not a part of C’s language.

In addition, as a result of having the ¢/d blocks between ¢q and ¢; /g2, no bounded
look-ahead can resolve the nondeterminism of C: Assuming, by contradiction, that the
nondeterminism in g can be resolved by a look-ahead of m letters into the future, the
automaton cannot accept either a(cd)™aa(cd)™a or a(cd)™ba(cd)™b, which are a part
of C’s language.

Fig.4. A GFG-NBW that cannot be pruned into a deterministic automaton with look-ahead.
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