
On the (In)Succinctness of Muller Automata∗

Udi Boker

Interdisciplinary Center (IDC), Herzliya, Israel

Abstract
There are several types of finite automata on infinite words, differing in their acceptance condi-
tions. As each type has its own advantages, there is an extensive research on the size blowup
involved in translating one automaton type to another.

Of special interest is the Muller type, providing the most detailed acceptance condition. It
turns out that there is inconsistency and incompleteness in the literature results regarding the
translations to and from Muller automata. Considering the automaton size, some results take into
account, in addition to the number of states, the alphabet length and the number of transitions
while ignoring the length of the acceptance condition, whereas other results consider the length
of the acceptance condition while ignoring the two other parameters.

We establish a full picture of the translations to and from Muller automata, enhancing known
results and adding new ones. Overall, Muller automata can be considered less succinct than par-
ity, Rabin, and Streett automata: translating nondeterministic Muller automata to the other
nondeterministic types involves a polynomial size blowup, while the other way round is expo-
nential; translating between the deterministic versions is exponential in both directions; and
translating nondeterministic automata of all types to deterministic Muller automata is doubly
exponential, as opposed to a single exponent in the translations to the other deterministic types.
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1 Introduction

Automata on infinite words were introduced in the 60’s, in the course of solving fundamental
decision problems in mathematics and logic [4, 14, 10, 16]. Today, they are widely used
in formal verification and synthesis of nonterminating systems, where their size and the
complexity of performing operations on them play a key role. Unlike automata on finite
words, there are several types of automata on infinite words, differing in their acceptance
conditions, most notably Büchi [4], Muller [14], Rabin [16], Streett [21], and parity [13]. Each
of the types has its own advantages, for which reason there is an extensive research on the
size blowup involved in the translations between them [10, 17, 18, 15, 22, 5, 19, 2, 20].

The size of an automaton can be generally viewed as the sum (or maximum) of its element
sizes, namely the maximum of the alphabet length, the number of states, the number of
transitions, and the index, where the latter denotes the size of the acceptance condition. For
Büchi automata the index is 1, for parity it can be as large as the number of states, and for
Rabin, Streett, and Muller it can be exponentially larger than the number of states.

When analyzing translations between automata, the first measure to consider is the
size blowup, while a second consideration is the influence of and on each of the automaton
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elements. For example, nondeterministic Büchi automata of size n can be translated to
deterministic Rabin automata of size in 2O(n log n); The constructed Rabin automata have,
by some algorithms, an index in O(n) [17], while by others it is in 2O(n) and the number of
states is slightly smaller [19].

In addition to the number of states and the index, a central element to consider is the
alphabet length, which might be exponentially larger than the number of states. There are
cases in which the alphabet length has no influence on the size blowup (e.g. [22]) and others
in which it significantly influences it (e.g. [7]). For lower bound results, the aim is to provide
a family of languages over a fixed alphabet. Considering the Büchi-determinization example,
Michel provided a matching lower bound of 2Ω(n log n) [11], however he used Büchi automata
over alphabets of length linear in the number of states (and therefore with quadratically
many transitions). Afterwards, Löding improved the lower bound to be over a fixed alphabet
[9]. An often productive approach is to start with a rich alphabet of length exponential in
the number of states, get a lower bound with respect to the number of states, while ignoring
the alphabet length and the number of transitions, and then enhance it to be over a fixed
alphabet [22, 3]. The challenge in this approach is to encode the rich alphabet by a fixed
one without enlarging the number of states.

Less central is the number of transitions, which might be as large as the product of the
alphabet length and quadratically the number of states. Nevertheless, this element is often
taken into account in analyzing the size blowup [8, 19]. Moreover, in recent years there is a
growing interest in automata with acceptance labeling on transitions rather than on states
(e.g. [5]), further increasing the importance of this element.

We concentrate on the translations to and from Muller automata. It turns out that there
is inconsistency and incompleteness in the literature results regarding these translations.

The Muller condition explicitly lists the exact subsets of states that may be visited
infinitely often along an accepting run. This is in distinction to other types, such as Rabin
and Streett, which specify a list of constraints on the subsets of states that are visited
infinitely often. It is therefore reasonable to assume that Rabin and Streett automata can be
exponentially more succinct than Muller automata, which is indeed the case [17].

An interesting question is whether the explicit Muller condition can allow for automata
that are exponentially more succinct than the other types. The literature answer seems
to be yes. In [9], there is an exponential lower bound for the translation of deterministic
Streett to deterministic Rabin automata, and vice versa. It is claimed there that these lower
bounds also hold for the translations of deterministic Muller to deterministic Rabin and
Streett automata. However, a closer look at the family of Streett automata that is used
in the lower-bound proof suggests that equivalent deterministic Muller automata need an
index exponential in the number of states. Thus, they are not exponentially smaller than the
equivalent deterministic Rabin automata. Another candidate family of languages {Ln} is the
one used in Michel’s lower bound [11]. Löding shows that Ln is recognized by a deterministic
Muller automaton with only n2 states, whereas an equivalent deterministic Rabin automaton
needs 2Ω(n log n) states [9]. Yet, these Muller automata also require an index exponential in
the number of states.

It is thus open whether the explicit Muller condition can allow for significantly smaller
automata than equivalent Rabin and Streett automata. We answer it positively, providing
families of deterministic Muller automata of size in O(n), for which we prove that equivalent
deterministic Rabin and Streett automata have at least 2Ω(n) states (Theorems 4 and 5).
We leave open a gap between this lower bound and the 2O(n log n) upper bound of the State
Appearance Records construction.
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As for the translation of Muller automata to nondeterministic automata of the other
types, there is a known construction that involves an O(n3) size blowup in the translation
to Büchi, parity, and Rabin automata, which can be improved to O(n2) for the translation
to Streett. We provide corresponding lower bounds, tight for the translations to Büchi,
parity, and Streett, and with a gap between Ω(n2) and O(n3) for the translation to Rabin
(Theorems 8-10).

Regarding the translations to Muller automata, Safra shows that the translation of
deterministic Büchi to nondeterministic Muller automata involves an exponential size blowup,
and of nondeterministic Büchi to deterministic Muller a doubly exponential blowup [17].
Safra does include the index in the automaton size, however uses in the latter lower bound
an alphabet of length exponential in the number of states.

We strengthen Safra’s lower bounds, by providing families of languages over a fixed
alphabet and by showing that the size blowup stems directly from the structure of the
translated automata, regardless of the acceptance condition—our languages are recognized by
looping automata, which are Büchi automata all of whose states are accepting (Theorems 12
and 16).

For the translation of deterministic automata as well as for the translation to nondetermin-
istic Muller automata, the bounds are tight for all types. Considering the translations of
nondeterministic automata to deterministic Muller automata, the bounds are tight for looping,
weak, and co-Büchi automata, there is a gap between 22Ω(n) and 22O(n log n) for Büchi, and a
gap between and 22Ω(n) and 22O(n2 log n2) for parity, Rabin, and Streett.

The translation blowups are summarized in Tables 1 and 2. Table 1 only includes types to
which Muller automata can always be translated, while Table 2 includes additional types, as
they all can be translated to Muller. Theorems 4-5 and 8-10 are new, while Theorems 12 and
16 strengthen known results. On the technical level, Theorem 4 has the most involved proof,
Theorem 5 is proved analogously, and the proofs of Theorems 8 and 9 provide two different
lower-bound techniques, on top of which the proof of Theorem 10 is built. Theorems 12 and
16 strengthen lower-bound results that were known for Büchi automata over a linear or an
exponential alphabet to corresponding results for looping automata over a fixed alphabet.

2 Preliminaries

Given a finite alphabet Σ, a word over Σ is a (possibly infinite) sequence w = w(0) ·w(1) · · ·
of letters in Σ.

An automaton is a tuple A = 〈Σ, Q, δ,Q0, α〉, where Σ is the input alphabet, Q is a finite
set of states, δ : Q× Σ→ 2Q is a transition function, Q0 ⊆ Q is a set of initial states, and
α is an acceptance condition. The automaton A may have several initial states and the
transition function may specify many possible transitions for each state and letter, and hence
we say that A is nondeterministic. In the case where |Q0| = 1 and for every q ∈ Q and
σ ∈ Σ, we have |δ(q, σ)| ≤ 1, we say that A is deterministic. For a state q of A, we denote
by Aq the automaton that is derived from A by changing the set of initial states to {q}.

A run, or a path, r = r(0), r(1), · · · of A on w = w(0) · w(1) · · · ∈ Σω is an infinite
sequence of states such that r(0) ∈ Q0, and for every i ≥ 0, we have r(i+ 1) ∈ δ(r(i), w(i)).

Acceptance is defined with respect to the set inf (r) of states that the run r visits infinitely
often. Formally, inf (r) = {q ∈ Q | for infinitely many i ∈ IN, we have r(i) = q}. As Q is
finite, it is guaranteed that inf (r) 6= ∅. The run r is accepting iff the set inf (r) satisfies the
acceptance condition α, and otherwise it is rejecting.

Several acceptance conditions are studied in the literature; the main ones are:

CSL 2017



12:4 On the (In)Succinctness of Muller Automata

To
Deterministic Non-Deterministic

From P R S B P R S

Det.
Muller

2O(n log n)

2Ω(n)

Prop. 3
Thms. 4,5 Θ(n3)

Prop. 6
Thm. 10

O(n3)
Ω(n2)

Prop. 6
Thm. 9

Θ(n2)

Prop. 7
Thm. 8Non-Det.

Muller

2O(n3 log n3)

2Ω(n)

Prop. 1,2

Table 1 The size blowup involved in the translations of Muller automata to Büchi, Parity, Rabin,
and Streett automata.

To Det.
Muller

Non-Det.
MullerFrom

Det. All
2Θ(n)

Prop. 11, Thm. 12

Non-

Det.

L
22Θ(n)

Prop. 13, Thm. 16
2Θ(n)

Prop. 11
Thm. 12

W

C

B 22O(n log n)

22Ω(n)

Prop. 14,15
Thm. 16

P

22O(n2 log n2)R

S
Table 2 The size blowup involved in the translations to Muller automata. “All” stands for the

automata types as abbreviated in the table by their first letter, namely Looping, Weak, Co-Büchi,
Büchi, Parity, Rabin, and Streett.



U. Boker 12:5

Büchi, where α ⊆ Q, and r is accepting iff inf (r) ∩ α 6= ∅.
co-Büchi, where α ⊆ Q, and r is accepting iff inf (r) ∩ α = ∅.
weak is a special case of the Büchi condition, where every strongly connected component
of the automaton is either contained in α or disjoint to α; that is, no strongly connected
component has a state in α and some other state not in α.
looping is a special case of the Büchi condition, where α = Q, meaning that all states are
accepting.
parity, where α = {α1, α2, . . . , α2k} with α1 ⊂ α2 ⊂ · · · ⊂ α2k = Q, and r is accepting if
the minimal index i for which inf (r) ∩ αi 6= ∅ is even.
Rabin, where α = {〈α1, β1〉, 〈α2, β2〉, . . . , 〈αk, βk〉}, with αi, βi ⊆ Q and r is accepting iff
for some 1 ≤ i ≤ k, we have inf (r) ∩ αi 6= ∅ and inf (r) ∩ βi = ∅.
Streett, where α = {〈β1, α1〉, 〈β2, α2〉, . . . , 〈βk, αk〉}, with βi, αi ⊆ Q and r is accepting iff
for all 1 ≤ i ≤ k, we have inf (r) ∩ βi = ∅ or inf (r) ∩ αi 6= ∅.
Muller, where α = {α1, α2, . . . , αk}, with αi ⊆ Q and r is accepting iff for some 1 ≤ i ≤ k,
we have inf (r) = αi .

Notice that Büchi and co-Büchi are special cases of the parity condition, which is in turn
a special case of both the Rabin and Streett conditions.

The number of sets in the parity and Muller acceptance conditions or pairs in the Rabin
and Streett acceptance conditions is called the index of the automaton. For looping, weak,
co-Büchi, and Büchi automata, the index is 1.

The size of an automaton is the maximum size of its elements; more precisely, it is the
maximum of the alphabet length, the number of states, the number of transitions, and the
index.

An automaton accepts a word if it has an accepting run on it. The language of an
automaton A, denoted by L(A), is the set of words that A accepts. We also say that A
recognizes the language L(A). Two automata, A and A′, are equivalent iff L(A) = L(A′).

For a finite path C = q1q2 · · · qn, we say that C is accepting (resp., rejecting) if the infinite
path Cω is accepting (resp., rejecting). Notice that the union of two Rabin-rejecting (finite)
paths is Rabin-rejecting, and of two Streett-accepting (finite) paths is Streett-accepting.

The class of an automaton characterizes its branching mode (deterministic or nondetermin-
istic) and its acceptance condition. In the more technical paragraphs, we shall denote the
different classes of automata by three letter acronyms in {D,N} × {L, W, B, C, P, R, S, M}
× {W}. The first letter stands for the branching mode of the automaton (deterministic or
nondeterministic); the second for the acceptance-condition (looping, weak, Büchi, co-Büchi,
parity, Rabin, Streett, or Muller); and the third indicates that the automaton runs on words.
For example, DBW stands for deterministic Büchi automata on words.

Büchi, parity, Rabin, Streett, and Muller automata have the same expressive power,
recognizing all ω-regular languages. Looping, weak, and co-Büchi automata, as well as
deterministic Büchi automata, are less expressive.

3 From Muller

We start with the translation of nondeterministic Muller automata to deterministic automata
of the other types, for which there are known singly-exponential constructions. We continue,
in Section 3.2, with the translation of deterministic Muller to deterministic automata of the
other types, for which we answer positively the open question of whether an exponential
size blowup is inevitable. In Section 3.3, we provide lower bounds for the known polynomial
translations of Muller automata to nondeterministic automata of the other types.

CSL 2017
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3.1 From Nondeterministic Muller To Deterministic Types
The translation of Muller automata to deterministic automata of the other types involves
a singly exponential size blowup. A possible construction is to first translate the Muller
automaton into a Büchi automaton, involving an O(n3) size blowup (Prop. 6), and then
determinize it into a Rabin or parity automaton of size in 2O(n3 log n3) [17, 15]. An alternative
approach is to translate the NMW to a nondeterministic Streett automaton, which only in-
volves a O(n2) blowup (Prop. 7), and then determinize the latter. Yet, as the determinization
of Streett automata is more involved [18, 15], the overall size blowup is not improved.
I Proposition 1 ([17, 15]). Muller automata of size n can be translated to parity, Rabin, and
Streett automata of size in 2O(n3 log n3).

An exponential lower bound for the determinization of all automata types is trivial, by
reduction to the case of finite words.
I Proposition 2. Determinizing all automata types involves at least an exponential size
blowup.

It may be interesting to close the gap between the trivial 2Ω(n) lower bound and the
2O(n3 log n3) upper bound.

3.2 From Deterministic Muller To Deterministic Types
Translating deterministic Muller automata to deterministic parity, Rabin, and Streett auto-
mata can be done by the State Appearance Records (SAR) construction [6]. The translation
of a DMW with l states results in a DPW with up to 2O(l log l) states, regardless of the
DMW’s index.
I Proposition 3 ([6]). Deterministic Muller automata of size n can be translated to determin-
istic parity, Rabin, and Streett automata of size in 2O(n log n).

We show below that an exponential size blowup in the translation to parity, Rabin, and
Streett automata is inevitable. The proofs borrow ideas from lower bound proofs in [9] and
[1], building on the property of the Rabin (resp., Streett) acceptance condition, according to
which the union of two rejecting (resp., accepting) cycles is rejecting (resp., accepting).

We start with the translation to Rabin automata. Consider the family of DMWs {Dn},
as depicted in Figure 1. The DMW Dn accepts words over the “alphabet” [−n..n], in which
the “letters” that appear infinitely often are exactly all of the “letters” between −i and i, for
some i ∈ [1..n]. Technically, a “letter” i is the finite word ai# and −i is bi#.

Let wi,j , for i < j ∈ [−n..n], be words in which exactly all of the letters in [i..j] appear
infinitely often. We show that a DRW A equivalent to Dn has at least 2n−1 states, by proving
that a run r of A on the word w−(i+1),i+1 visits at least twice the number of states that a
run ri of A on w−i,i visits.

The proof idea is intuitively as follows. Let r′ and r′′ be the runs of A on w−i,i+1 and
w−(i+1),i, respectively. Then: I) The runs r′ and r′′ contain the run ri, thus visit at least as
many states as ri. II) By the definition of Dn, both r′ and r′′ are rejecting. III) According to
the property of the Rabin condition, the union of r′ and r′′ is rejecting. IV) The runs r′ and
r′′ visit infinitely often disjoint sets of states—if they had a common state, their union would
have been a rejecting run of A on w−(i+1),i+1, contradicting its acceptance by Dn. V) The
run r contains the runs r′ and r′′, thus visit at least twice the number of states that ri visits.

I Theorem 4. The translation of deterministic Muller automata to deterministic Rabin
automata involves a size blowup of at least 2Ω(n). In particular, there is a family {Dn}n≥1
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Q′i = {qj | j ∈ [−i..i−1]} and Q′′i = {qj | j ∈ [−(i−1)..i]}

D′′n: The sets Pi, for i ∈ [0..n], where Pi = {qj | j ∈ [−i..n−i]}

D′n: The sets Q′i and Q′′i , for i ∈ [1..n], where

Dn: The sets Qi, for i ∈ [1..n], where Qi = {qj | j ∈ [−i..i]}

The acceptance conditions:

The Deterministic Muller automata Dn, D′n, and D′′n.

· · ·· · · q−1 qnq1 q2q−n q−2 q0

# # # # #

ab ab aabb

#

Figure 1 Deterministic Muller automata Dn, D′n, and D′′n of size in O(n). For Dn and D′n,
equivalent deterministic Rabin and Streett automata, respectively, have at least 2n−1 states. For
D′′n, equivalent nondeterministic Streett automata have at least n2/2 states.

of DMWs with 2n+1 states, 4n transitions, and n accepting sets, for which equivalent DRWs
have at least 2n−1 states.

Proof. Consider the family {Dn} of DMWs over Σ = {a, b,#}, as depicted in Figure 1, and
let R be a DRW equivalent to Dn.

For readability, we define for every i ∈ [1..n], î = ai# and −̂i = bi#. Then, the language
of Dn can be defined over the finite words ĵ, for j ∈ [−n..− 1] ∪ [1..n]. For simplifying the
expressions, we will speak of ĵ, for j ∈ [−n..n], while considering 0̂ to be the empty word.

We say that a state q of R is significant if it is reachable after reading a # (namely after
an î subword), and from which the automaton can accept some word. Observe that for every
significant state q, we have L(Rq) = L(R), namely the automaton that we get from R by
changing the initial state to q is equivalent to R (and to Dn). This is the case since every
accepting run of Dn returns to the initial state after reading a #.

We prove by induction on h, for h ∈ [1..n], the following claim, from which the theorem
immediately follows: For every significant state q of R, there exist finite words u, v ∈ Σ∗,
such that:
i) For every j ∈ [−n..n], ĵ appears in u at its start position or after a # iff j ∈ [−h..h]. The

same w.r.t. v.
ii) The run of Rq on u reaches some significant state p.
iii) The run of Rp on v returns to p, while visiting at least 2h−1 different significant states.

The base case, for h = 1, is trivial, as it means a cycle of size at least 1.
In the induction step, we assume the induction hypothesis for h and prove it for h+1.

We do it in two phases.
Phase 1. We first show that we can add ĥ+1 as well as −̂(h+1) to u and v, while

keeping the induction hypothesis. Formally, we claim that for every significant state q of R,
there exist finite words u′, v′, u′′, v′′ ∈ Σ∗, such that:
i’) For every j ∈ [−n..n], ĵ appears in u′ at its start position or after a # iff j ∈ [−h..h+1].

The same w.r.t. v′.
ii’) The run of Rq on u′ reaches some significant state p′.
iii’) The run of Rp′ on v′ returns to p′, while visiting at least 2h−1 different significant states.
i”) For every j ∈ [−n..n], ĵ appears in u′′ at its start position or after a # iff j ∈ [−(h+1)..h].

The same w.r.t. v.

CSL 2017



12:8 On the (In)Succinctness of Muller Automata

ii”) The run of Rq on u′′ reaches some significant state p′′.
iii”) The run of Rp′′ on v′′ returns to p′′, while visiting at least 2h−1 different significant

states.
We prove below the claim w.r.t. u′ and v′, while the case of u′′ and v′′ is completely analogous.

Consider a significant state q, which we also denote by p0, and let u0 and v0 be finite
words that satisfy requirements i-iii of the induction hypothesis w.r.t. p0. We define the
finite word z0 = u0v0ĥ+1. Notice that a ĵ-word appears in z0 iff j ∈ [−h..h+1]. Let p1 be
the significant state that Rp0 reaches when reading z0.

We iteratively continue as above, taking words u1, v1, and z1 w.r.t p1, etc., until reaching
an iteration i, for which there is k < i, such that pi = pk.

Observe that the words u′ = z0z1 · · · zk−1 and v′ = zkzk+1 · · · zi−1 satisfy the requirements
i’-iii’: they contain a ĵ-word iff j ∈ [−h..h+1]; the run of Rq on u′ reaches the significant state
pk; and the run of Rpk on v′ returns to pk, while visiting at least 2h−1 different significant
states. The latter holds, since the run of Rpk on zk already visits at least 2h−1 different
significant states.

Phase 2. We continue with showing that the induction claim holds for h+1.
Consider a significant state q, denoted by p0, and let u′0 and v′0 be finite words that

satisfy requirements i’-iii’ w.r.t. q. Let p′1 be the significant state that Rp0 reaches when
reading u′0v′0. Now, let u′′0 and v′′0 be finite words that satisfy requirements i”-iii” w.r.t. p′1.
Let p1 be the significant state that Rp′1 reaches when reading u′′0v′′0 . We define the finite
word z0 = u′0v

′
0u
′′
0v
′′
0 . Notice that a ĵ-word appears in z0 iff j ∈ [−(h+1)..h+1].

We iteratively continue as above, defining words zi, until reaching an iteration i, for
which there is k < i, such that pi = pk.

We claim that the words u = z0z1 · · · zk−1 and v = zkzk+1 · · · zi−1 satisfy requirements
i-iii w.r.t. q and h+1. The first two requirements are simply satisfied by the definition of u
and v. As for the third requirement, we claim that when Rpk runs on v, it visits disjoint
set of states when reading v′k and v′′k . This will provide the required 2h different significant
states, as Rpk visits at least 2h−1 different significant states when reading each of v′k and v′′k .

Indeed, assume, by way of contradiction, that Rpk visits some state s both when reading
v′k and when reading v′′k . Let l′ and r′ be the parts of v′k that Rpk reads before and after
reaching s, respectively, and l′′ and r′′ the analogous parts of v′′k . Now, define the infinite
words m′ = u′k (l′ r′)ω, m′′ = u′k l

′ (r′′ l′′)ω, and m = u′k (l′ r′′ l′′ r′)ω.
Observe that since the language of Rpk is the same as of Dn, both m′ and m′′ are not

accepted by Rpk , while m is accepted by Rpk . However, the set of states that are visited
infinitely often in the run of Rpk on m is the union of the sets of states that appear infinitely
often in the runs of Rpk on m′ and m′′. Hence, since the union of two Rabin-rejecting paths
is Rabin-rejecting, the run of Rpk on m should be rejecting, leading to a contradiction. J

Considering the translation of deterministic Muller to deterministic Streett automata, the
family {Dn}n≥1 of DMWs of Figure 1 does not provide the required lower bound. Indeed,
there is a DSW equivalent to Dn over the structure of Dn and having 2n Street acceptance
pairs—for every i ∈ [1..n], the pairs 〈{qi}, {q−i}〉 and 〈{q−i}, {qi}〉.

Yet, an exponential blowup can be shown by changing the acceptance condition of Dn,
such that the combination of two accepting cycles yields a rejecting cycle, as is done in the
Muller automata D′n of Figure 1.

I Theorem 5. The translation of deterministic Muller automata to deterministic Streett
automata involves a size blowup of at least 2Ω(n). In particular, there is a family {D′n}n≥1 of
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DMWs with 2n+1 states, 4n transitions, and 2n accepting sets, for which equivalent DSWs
have at least 2n−1 states.

Proof. The proof is completely analogous to the proof of Theorem 4, except for combining
two accepting cycles rather than two rejecting ones; that is, the only change to the proof of
Theorem 4 is in the last paragraph, which should be as follows.

Observe that since the language of Rpk is the same as of D′n, both m′ and m′′ are accepted
by Rpk , while m is not accepted by Rpk . However, the set of states that are visited infinitely
often in the run of Rpk on m is the union of the sets of states that appear infinitely often
in the runs of Rpk on m′ and m′′. Hence, since the union of two Streett-accepting paths is
Streett-rejecting, the run of Rpk on m should be accepting, leading to a contradiction.

J

3.3 From Muller To Nondeterministic Types
Our bounds for the translations of Muller automata to nondeterministic automata of the other
types are the same when translating deterministic and when translating nondeterministic
Muller automata. We show the upper bounds with respect to nondeterministic Muller auto-
mata, obviously holding also for deterministic automata, and the lower bounds with respect
to deterministic Muller automata, obviously holding also for nondeterministic automata.

There is a well known translation of Muller automata to Büchi automata, involving a size
blowup of O(n3) , which can be improved to O(n2) when the target automaton is Streett.

We show a tight Ω(n2) lower bound for the translation to Streett, and an Ω(n2) lower
bound for the translation to Rabin. The latter already holds for a Muller automaton with
index 1. Combining the techniques of these two lower bounds, we show a tight Ω(n3) lower
bound for the translation to Büchi and parity automata.

Upper Bounds

The idea in translating a Muller automaton A with index k to a Büchi automaton B is to
first “guess” which set S of states, out of the k possibilities, will be visited infinitely often.
This contributes the ‘first’ n of the O(n3) construction. The second step is to “guess” when
the states out of S are no longer visited. This step only doubles the automaton size. Then,
having up to n states in S, B traverses n copies of the restriction of A to the states of S, for
ensuring that all of the n states are visited infinitely often. This contributes the two other
n’s of the O(n3) construction.

I Proposition 6. Muller automata of size n can be translated to Büchi automata of size in
O(n3). In particular, for every NMW with l states, m transitions, and index k, there exists
an equivalent NBW with kl2 states and k(l + 1)m transitions.

A translation to Streett automata is possible with only an O(n2) size blowup, using the
Streett condition to enforce all of the relevant n states to be visited infinitely often.

I Proposition 7. Muller automata of size n can be translated to Streett automata of size in
O(n2). In particular, for every NMW with l states, m transitions, and index k, there exists
an equivalent NSW with 2kl states, 3km transitions, and index kl.

Lower Bounds

When we considered in Section 3.2 the translations to deterministic automata, we showed a
lower bound on the number of states that a run r on some word w must visit, by adding
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12:10 On the (In)Succinctness of Muller Automata

up the already achieved lower bounds on sub-runs of r on subwords of w (Theorems 4 and
5). This technique cannot work when considering the translations to a nondeterministic
automaton, as the automaton may have many runs on w, not necessarily containing the
“best” runs on w’s subwords.

For achieving a lower bound on the number of states in a nondeterministic Streett
automaton A, we define a new family {D′′n} of DMWs, as depicted in Figure 1, and concentrate
on the accepting runs of A. The DMW D′′n accepts words over the “alphabet” [−n..n], in
which the “letters” that appear infinitely often are exactly all of the “letters” between −i
and n− i, for some i ∈ [1..n]. Technically, a “letter” i is the finite word ai# and −i is bi#.

For getting the Ω(n2) lower bound, we first show that every accepting run of A must visit
infinitely often at least n different states. The reason is that A needs to count n consecutive
a’s or b’s, as otherwise it will also accept illegal words with too many consecutive a’s or b’s.
Next, we show that accepting runs on different words visit infinitely often disjoint sets of
states. The reason stems from a property of the Streett condition, according to which the
combination of two accepting cycles is accepting—if the runs had a common state, their
combination would have accepted the combined word, which is rejected by D′′n.

I Theorem 8. The translation of deterministic Muller automata to nondeterministic Streett
automata involves a size blowup of at least Ω(n2). In particular, there is a family {D′′n}n≥1
of DMWs with 2n+1 states, 4n transitions, and n+ 1 accepting sets, for which equivalent
NSWs have at least n2/2 states.

Proof. Consider the family {D′′n}n≥1 of DMWs depicted in Figure 1, and let A be an NSW
equivalent to D′′n.

For every i ∈ [0..n], define the word wi = (bi#an−i#)ω, which is accepted by A, and let
ri be an accepting run of A on wi. (For i = 0 and i = n, the first and last #, respectively,
are omitted from wi’s period.)

For showing that A has at least n2/2 states, we will prove that I) for every i ∈ [0..n], the
run ri visits infinitely often at least i different states, and II) for every i 6= j ∈ [0..n], the
states that ri and rj visit infinitely often are disjoint. (This will imply Σn

i=0i = n(n+ 1)/2
states.)

I) Assume toward contradiction that for some i ∈ [0..n], the run ri visits less than i

different states infinitely often. Then ri makes a cycle c of length m < i while reading only
b’s. Let q be a state that ri visits infinitely often along the cycle c, and let p be the first
position of wi in which ri visits q. Define the word w′i that is derived from wi by adding
the finite word bnm in position p. Observe that A accepts w′i by a the run r′ that starts like
ri, makes n times the cycle c in position p, and then continues like ri. However, w′i is not
accepted by D′′n, leading to a contradiction.

II) Assume toward contradiction that for some i < j ∈ [0..n], both ri and rj visit some
state s infinitely often. Let p and p′ be positions of wi in which ri visits s, and between
which ri visits at least n times all the states that it will visit infinitely often. Let u be the
subword of wi between positions p and p′. Notice that wi must contain both bi and an−i.

Now, let w be the word that is derived from wj by adding u in every position in which
rj visits s. Consider the run r of A on w that follows rj , while making extra cycles from s

back to itself in every position that u was added to w. Notice that the states that r visits
infinitely often are the union of the states that ri and rj visit infinitely often. Hence, due
to the property of the Street condition that the union of two accepting cycles is accepting,
we have that r is accepting. Yet since w contains both bj and an−i infinitely often, it is not
accepted by D′′n, leading to a contradiction. J



U. Boker 12:11

M′n: The sets Qi, for i ∈ [0..n], where Qi = {q0} ∪ {pj , qj | j ∈ [−i..n−i] \ {0}}

The deterministic Muller automataMn andM′n

Mn: Only the right side, namely {pi, qi | i ≥ 0}
The states:

Mn: A single set with all its states, namely {pi, qi | i ≥ 0}
The acceptance conditions:
M′n: All states
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Figure 2 The Deterministic Muller automataMn andM′n of size in O(n), for which equivalent
nondeterministic Rabin and parity automata have, respectively, at least n2/2 and n3/2 states.

The proof of Theorem 8 is based on the fact that the union of two Streett accepting cycles
is accepting. This does not hold for the Rabin condition, and therefore a different technique
is needed for a lower bound in the translation to a nondeterministic Rabin automaton A.

We should somehow take advantage of the dual property of the Rabin condition, according
to which the union of two Rabin rejecting cycles is rejecting. Yet, there is no use in combining
two rejecting runs, as A need not use their rejecting combination on a word that should be
accepted, but rather use a different run that does accept it.

Our approach will be to construct a word w on which an accepting run r of A must visit
at least n2 different states, or else we can split r into rejecting runs whose union, which is
r, is also rejecting. For constructing such a word w, we need a different family of DMWs,
in which a state qi can be visited without visiting qi−1. We define such a family of DMWs
{Mn} in Figure 2.

I Theorem 9. The translation of deterministic Muller automata, even with index 1, to
nondeterministic Rabin automata involves a size blowup of at least Ω(n2). In particular,
there is a family {Mn}n≥1 of DMWs with 2n+1 states, 3n transitions, and a single accepting
set, for which equivalent NRWs have at least n2/2 states.

Proof. Consider the family {Mn}n≥1 of DMWs depicted in Figure 2, and let A be an NRW
equivalent toMn.

Define the finite word u = (a##aa## · · · an##), and the infinite word w = uω. Notice
that the length of u is bigger than n2/2 and that A accepts w. We will show that an accepting
run r of A on w must visit infinitely often at least n2/2 different states, from which the
required result immediately follows.

Assume toward contradiction that r visits the set S of states infinitely often, where
|S| < n2/2. Consider a simple cycle C of A along states in S. We claim that C is a rejecting
cycle.

Indeed, consider a state q in C, let x be a finite word on which A can reach q, and let y
be a finite word on which Aq can reach back q along C. The word y can either or not include
the letter #. If y does not include #, thenMn does not accept the word yxω, since it has
the infix an+1, on which Mn cannot run. If y does include #, thenMn also does not accept
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12:12 On the (In)Succinctness of Muller Automata

the word yxω, since the subword an does not appear infinitely often in it. Hence,Mn does
not accept yxω, implying that C is a rejecting cycle, as otherwise A would have accepted
yxω.

Now, S is the union of its simple cycles, and since all of them are rejecting, by the
property of the Rabin condition, so is S. Hence, the run r is rejecting. Contradiction. J

Parity automata are a special case of both Rabin and Streett automata. This suggests
that we might be able to apply the lower bound techniques of both Theorem 8 and Theorem 9.
Indeed, in Theorem 10 we show an Ω(n3) lower bound for the translation of the deterministic
Muller automata {Mn} of Figure 2 to nondeterministic parity automata. We use the
technique of Theorem 8 for showing that there are n different runs that visit disjoint states,
and the technique of Theorem 9 for showing that each such run visits at least n2/2 different
states.

I Theorem 10. The translation of deterministic Muller automata to nondeterministic parity
automata involves a size blowup of at least Ω(n3). In particular, there is a family {Mn}n≥1
of DMWs with 4n+1 states, 6n transitions, and n+ 1 accepting sets, for which equivalent
NRWs have at least n3/2 states.

Proof. Consider the family {Mn}n≥1 of DMWs depicted in Figure 2, and let A be an NPW
equivalent toMn.

For every i ∈ [0..n], define the finite word ui = (b##bb## · · · bi##a##aa## · · · an−i##),
and the infinite word w = uω

i . (For i = 0 and i = n, the first and last ##, respectively, are
omitted from ui.) Notice that the length of ui is bigger than n2/2 and that A accepts wi.

Analogously to the arguments in Theorem 9, for every i ∈ [0..n], an accepting run ri

of A on wi must visit infinitely often at least n2/2 different states. Analogously to the
arguments in Theorem 8, for every i 6= j ∈ [0..n], accepting runs ri and rj of A on wi and
wj , respectively, do not have any state in common. Hence, there are at least n(n2/2) = n3/2
states in A. J

4 To Muller

We show that an exponential size blowup in the translations to nondeterministic Muller
automata is inevitable, even when the source automaton is deterministic. Furthermore,
translating nondeterministic automata to deterministic Muller automata, one cannot avoid
the aforementioned exponential blowup, getting a doubly exponential size blowup.

The inevitable size blowups stem directly from the structure of the source automata,
regardless of the alphabet and of the accepting condition—they already hold for looping
automata, whole of whose states are accepting, over a fixed alphabet of three letters.

Exponential upper bounds are immediate: every (deterministic) automaton of the con-
sidered types has an equivalent (deterministic) Muller automaton over the same states and
transitions. Thus, the Muller index can only be up to exponentially larger than the size of
the input automaton. Considering the translations of nondeterministic types to deterministic
Muller automata, the bound is tight for looping, weak, and co-Büchi automata, there is a
gap between 22Ω(n) and 22O(n log n) for Büchi, and a gap between 22Ω(n) and 22O(n2 log n2) for
parity, Rabin, and Streett.

I Proposition 11. The translation of all (deterministic) automata to (deterministic) Muller
automata involves a size blowup of up to 2O(n). (All = Looping, weak, co-Büchi, Büchi,
parity, Rabin, and Streett.)
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Dn:
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Figure 3 Deterministic looping automata of size in O(n), for which equivalent nondeterministic
Muller automata need an index of at least 2n.

4.1 To Nondeterministic Muller
An exponential size blowup in the translation of deterministic Büchi automata to non-
deterministic Muller automata is shown in [17]. They provide1 a family {Ln} of languages
over alphabets of length 2n, such that Ln is recognized by a Büchi automaton with n+ 2
states and n2 + n+ 2 transitions, while equivalent Muller automata have an index of at least
2n.

We improve the result by providing a different family {L′n} of languages over a fixed
alphabet, such that L′n is recognized by a looping automaton with 2n states and 3n transitions,
as depicted in Figure 3, while equivalent Muller automata need an index of at least 2n.

I Theorem 12. The translation of deterministic looping automata to nondeterministic
Muller automata involves a size blowup of at least 2Ω(n).

Proof. For every positive n ∈ IN, consider the DLW Dn of Figure 3, which we dub D, and
letM be an NMW equivalent to D. We denote by La the language of words with infinitely
many a’s.

We first classify the states ofM according to their connection with the qi states of D.
Formally, for every i ∈ [1..n], we define the set Si of states ofM to include exactly the states
s for which L(Ms) ∩ L(Dqi) ∩ La 6= ∅.

Observe that for every i ∈ [1..n] and finite word u, ifM visits a state s ∈ Si after reading
u along an accepting run ofM on a word with infinitely many a’s, then D(u) = qi. This
follows from the structure of D, according to which there is no word v ∈ La, such that
v ∈ L(Dqi) ∩ L(Dp) for p 6= qi. This also implies that the sets S1, . . . , Sn are mutually
disjoint.

We continue with showing thatM’s index must be at least 2n. For every subset H ⊆ [1..n],
there is a word wH ∈ L(D) ∩ La, such that for every i ∈ [1..n], D’s run on wH visits qi

infinitely often iff qi ∈ H. Now, for every i ∈ H, there must be a state s ∈ Si that is visited
infinitely often by an accepting run rH ofM on wH , as infinitely often (Dqi) ∩ La 6= ∅. Let
FH be an accepting set ofM according to which rH is accepted.

Assume, by way of contradiction, that there are two subsets H 6= H ′ such that FH = FH′ .
Without loss of generality, consider a number i ∈ H ′ \ H. Then, since there is a state
s ∈ Si ∩ FH′ and FH = FH′ , it follows that s is visited infinitely often in the run rH ofM

1 In [17], there is a statement of the lower bound without providing the explicit languages and Büchi
automata. They refer to a lemma about the complementation of Muller automata, and claim that
analogous languages provide the lower bound. The languages described here in the name of [17] are
those assumed to be the analogous ones.

CSL 2017



12:14 On the (In)Succinctness of Muller Automata

on wH . Thus, D visits qi infinitely often in its run over wH , contradicting the definition of
wH , as i 6∈ H. J

4.2 To Deterministic Muller
Following Theorem 12, the translation of deterministic automata, of all relevant types, to
deterministic Muller automata is in 2Θ(n).

We shall look into the translations of nondeterministic automata to deterministic Muller
automata. These translations might involve a doubly exponential size blowup, as the
determinization process exponentially enlarges the number of states, and the Muller index
might be exponential in the latter number of states. This is indeed the case, and the
double exponent stems directly from the automaton structure. It already holds for a looping
automaton (all of whose states are accepting) over a fixed alphabet.

Upper Bounds

A co-Büchi automaton of size n can be translated to a deterministic Muller automaton with
2O(n) states [12], on top of which the index is in 22O(n) .
I Proposition 13. Looping, weak, and co-Büchi automata of size n can be translated to
deterministic Muller automata of size in 22O(n) .

A Büchi automaton of size n can be translated to a deterministic Muller automaton with
2O(n log n) states [17], on top of which the index is in 22O(n log n) .
I Proposition 14. Büchi automata of size n can be translated to deterministic Muller automata
of size in 22O(n log n) .

Parity and Rabin automata of size n can be translated to a Büchi automaton of size in
O(n2), and then determinized into a Muller automaton. For Streett automata, the above
procedure does not work as there is an exponential blowup in the translation of an NSW
to an NBW. Yet, one may determinize the Streett automaton directly into a deterministic
Muller automaton with 2O(n2 log n2) states [18, 15].
I Proposition 15. Parity, Rabin, and Streett automata of size n can be translated to
deterministic Muller automata of size in 22O(n2 log n2) .

Lower Bounds

A doubly exponential lower bound is already shown in [17], however it uses a family of
Büchi automata over alphabets of length exponential in the number of states. Hence, it is
reasonable to view the size of the resulting deterministic Muller automaton as only singly
exponential in the size of the original automaton. Safra’s languages [17]: For every n > 0, let
Sn = 2[1..n] and Σn = Sn ∪ [1..n], and define the language

Ln = {Y0y0Y1y1 . . . | for all i, Yi ∈ Sn and yi ∈ Yi}.

One can change Safra’s languages to use an alphabet of length linear in the number
of states, by replacing the subset-letters Yi with finite strings, separated with a dedicated
symbol #. For avoiding the need to count the finite-strings length, these strings will be of
an arbitrary length, “encoding” more than the original exponential alphabet. Formally, for
every n > 0, let Σn = {#, 1, 2, . . . , n}, and define the language

L′n = {Y0#y0#Y1#y1# . . . | for all i, Yi ∈ [1..n]∗ and yi ∈ [1..n] appears in Yi}.
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Figure 4 Looping automata of size in O(n), for which equivalent deterministic Muller automata
need an index of at least 22n

.

For achieving a 22Ω(n) lower bound, we further change the above languages, using a
fixed alphabet. Except for encoding the linear alphabet by a fixed one, analogously to
the way Löding encoded Michel’s language for the Büchi complementation lower bound [9],
we simplify the languages, in order to be recognized by looping automata, as depicted in
Figure 4.

I Theorem 16. The translation of nondeterministic looping automata to deterministic
Muller automata involves a size blowup of at least 22Ω(n) .

Proof. For every positive n ∈ IN, consider the NLW An of Figure 4, and letM be a DMW
equivalent to An.

In the scope of this proof, we say that the “encoding” of a number i ∈ IN, denoted by î,
is the finite string aib. For example, 2̂ = aab and 0̂ = b.

Consider the set S of states ofM that are reachable after reading a finite word u, such
that: i) u ends with #, ii) there is an odd number of #’s in u, and iii) there exists an infinite
word v, such that u · v ∈ L(An). Then S has at least 2n states, corresponding to the subsets
of numbers in [1..n] whose encodings appear in the suffix of u from the last even occurrence
of a # onwards, as shown below.

Indeed, assume toward contradiction a state q ofM that is reachable after reading two
finite words, u1 and u2, satisfying constraints i-iii above, and whose suffixes include encodings
of different numbers in [1..n]. Without loss of generality, there is a number i ∈ [1..n] that
is encoded in the suffix of u1 and not in the suffix of u2. Let v = (̂i ·#)ω. Since the word
w1 = u1 · v ∈ L(M), there is an accepting run ofMq on v. Thus,M also accepts the word
w2 = u2 · v, which is not in L(M), leading to contradiction.

We continue with showing that M’s index must be at least 22n−1. Consider the set
H = {∅, H1, H2, . . . ,H2n−1} of subsets of [1..n]. For every i ∈ [1..2n − 1], let hi be the
minimal number in Hi, and let Ĥi be some finite word that is the concatenation of all the
words ĵ, such that j ∈ Hi. As shown above, for every element Hi of H \ {∅}, there is a
corresponding state sHi

in S. We will show thatM must have an acceptance set for every
subset of S.

For every subset Z = {Hi1 , Hi2 , . . . ,Hi|z|} of H \ {∅}, consider the infinite word wZ =
(Ĥi1#ĥi1#Ĥi2#ĥi2 · · · Ĥi|z|#ĥi|z|#)ω. By the structure of An, wZ ∈ L(An) = L(M). By
the definition of the states in S, the accepting run ofM on wZ visits a state sx of S infinitely
often if and only if x ∈ Z. Hence, M has a different acceptance set for every subset of
H \ {∅}, implying an index of least 22n−1. J
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