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Abstract

Computational models are usually defined over specific domains. For ex-

ample, Turing machines are defined over strings, and the recursive func-

tions over the natural numbers. Nevertheless, one often uses one computa-

tional model to compute functions over another domain, in which case one

is obliged to employ a representation, mapping elements of one domain into

the other. For instance, Turing machines (or modern computers) are under-

stood as computing numerical functions, by interpreting strings as numbers,

via a binary or decimal representation, say.

We ask: Is the choice of the domain interpretation important? Clearly,

complexity is influenced, but does the representation also affect computabil-

ity? Can it be that the same model computes strictly more functions via

one representation than another? We show that the answer is “yes”, and

further analyze the influence of domain interpretation on the extensionality

of computational models (that is, on the set of functions computed by the

model).

We introduce the notion of interpretation-completeness for computa-

tional models that are basically unaffected by the choice of domain inter-

pretation, and prove that Turing machines and the recursive functions are

interpretation-complete, while two-counter machines are incomplete.

We continue by examining issues based on model extensionality that

are influenced by the domain interpretation. One such issue is the power

comparison of computational models, which leads us to suggest a notion for

comparing computational power of models operating over arbitrary domains.

A central motivation to understand the influence of domain interpre-

tation on computational models is the notion of “effective computation”.

Church’s original thesis, which later became the Church-Turing Thesis, con-

cerned effectiveness of functions over the natural numbers. Yet, one often

wants to use the thesis for referring to effectiveness over an arbitrary do-

main. For achieving this general notion of effectiveness, one has to under-

stand first the influence of domain interpretations on Turing machines and

to use a power comparison notion over arbitrary domains. Equipped with

our result on the interpretation-completeness of Turing machines and our

general comparison notion, we provide a general notion of effectiveness by

interpreting the Church-Turing Thesis over arbitrary domains.



The thesis analyzes the subject via the following issues:

• Demonstrating the phenomenon – Generally, the extensionality of

computational models is sensitive to the domain interpretation. This

remains true even when restricting the representations to be only bi-

jective mappings.

• Exploring the implications – Is there always an optimal representa-

tion, giving the best interpretation of a model? Are their models

immune to the influence of the domain interpretation? How can we

compare models over different domains? How best should one de-

fine the Church-Turing Thesis over arbitrary domains? How should

one properly represent the natural numbers? These problems are ad-

dressed in the subsequent chapters of this dissertation.

• Identifying interpretation-complete models – There are computational

models that are less influenced by the domain representation. We de-

fine and examine this completeness property, as well as some related

extensional properties. We prove that some standard models are com-

plete, among which are the recursive functions and Turing machines,

while others are incomplete, like two-counter machines.

• Providing a comparison notion – We provide a notion for comparing

the computational power of models operating over arbitrary domains.

While this notion addresses the sensitivity problem to the domain rep-

resentation, we raise additional concerns, this time from a more philo-

sophical point of view. Accordingly, we suggest a conceptual frame-

work for resolving these concerns and a corresponding mathematical

notion of comparison.

• Effective computation – We provide an interpretation of the Church-

Turing Thesis over arbitrary domains, based on the completeness of

Turing machines and our power comparison notion. As a result, we

provide a definition of an “effective string representation” of the nat-

ural numbers. In addition, we propose an axiomatization of an “effec-

tive model of computation” over an arbitrary countable domain. This

axiomatization is based on Gurevich’s postulates for sequential algo-

rithms. A proof is provided showing that all models satisfying these

axioms, regardless of underlying data structure, are of equivalent com-

putational power to, or weaker than, Turing machines.
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Chapter 1

Introduction

We explore the problem of the sensitivity of models to the domain interpre-

tation, and propose a way to handle it. This introductory chapter parallels

the structure of the thesis, as illustrated in Figure 1.1.

Sensitivity to domain interpretation. A computational model is de-

fined over a specific domain. However, we may often use it to compute

functions over a different domain. For example, using Turing machines (or

modern computers) to compute functions over natural numbers requires a

string representation of numbers. Another example becomes apparent when

comparing the computational power of two models that operate over differ-

ent domains – we are obliged to represent the domain of one model by the

domain of the other. Accordingly, the elements of the original domain are

interpreted as elements of the target domain (see illustration in Figure 2.1).

A “representation” is usually allowed to be any mapping from one domain

into another, as long as it is injective. That is, every original domain ele-

ment is mapped to a unique element of the second domain. A representation

may also be a relation (rather than a function), as long as two entities rep-

resenting the same element behave the same in the relevant context (see, for

example, [51]). The generalization of representations to relations does not

eliminate the sensitivity of models to the domain interpretation.

It turns out that interpreting the domain allows for the possibility that a

model be identified with one of its (strict) supermodels. The interpretation

might allow one to “enlarge” the extensionality of a model, adding some

“new” functions to it. A study of the sensitivity of models to interpretations

via injective representations is undertaken in Section 2.1.

A reasonable response might be to restrict representations to bijections

between domains. However, it turns out that there are models that can be

8



Identifying the problem of sensitivity

of models to the domain interpretation

Section 2.1

Trying to eliminate the problem Learning to live with it

Restricting the

representations

Sections 2.2, 2.3

Restricting the

acceptable models

Section 2.4

This direction is shown to end up with

overly restricted representations or models

· Investigating the variety of

interpretations

· Seeking maximal interpretations

· Identifying “immune” models

(“complete”/“stable” models)

Chapter 3

Defining a suitable

power comparison notion

Chapters 4 and 5

Examining effectiveness and

the Church-Turing Thesis

Chapter 6

Figure 1.1: Thesis structure
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Almost Identity (Section 2.3.1)

Narrow Permutations (Section 2.3)

Bijections (Section 2.2)

Injections (Section 2.1)

Figure 1.2: Seeking representations that cannot influence the extensionality

of models leaves us only with mappings that are almost the identity

identified with a supermodel even with bijective representations. That is,

their extensionality is isomorphic to the extensionality of some of their strict

supermodels. The case of bijective representations is explored in Section 2.2.

If bijective representations are not stringent enough, which representa-

tions are guaranteed not to influence the extensionality of computational

models? It turns out that only very limited representations are, namely,

“narrow permutations” (Definition 10). A sufficient and necessary criterion

for these “harmless representations” is given in Section 2.3. Not only are

narrow permutations a very limited family of representations, they are also

not closed under composition. Thus, seeking harmless representations for

comparative purposes would lead to an even more limited family of permu-

tations that are almost the identity (Definition 13). Hence, sticking to harm-

less representations is not a viable option, as it almost completely evaporates

the concept of interpretations. A scheme of the families of representations

involved is given in Figure 1.2.

Another direction for avoiding the influence of representations could be

narrowing down the definition of a computational model. Defining, for ex-

ample, that the set of computed functions must be closed under functional

composition. It turns out, however, that these standard computational prop-

erties are insufficient, as demonstrated in Section 2.4.

The implications. This sensitivity to the domain interpretation places a

question mark on some of the main issues that concern model extensionality:

How can we compare models over different domains? How should one define

effective computation over arbitrary domains? How should one properly rep-

resent the natural numbers? Is there always an optimal representation? Are

there models immune to the influence of the domain interpretation? These

problems are briefly answered below, and more comprehensively addressed

in Chapters 3, 4 and 6.
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Organizing model interpretations. Generally, the various interpreta-

tions of a model may be highly varied: they may be larger or smaller than

the original; for some models there are maximal interpretations while for

others there are none; and there are models that are already maximal. This

variety of possibilities is explored in Section 3.1.

The last property, that a model is already maximally interpreted, is the

one that interests us most. We call such a model “interpretation-complete”.

We also define a weaker property, denoted “interpretation-stable”, saying

that a model is maximal with respect to bijective representations. When

allowing only bijective representations, there are exactly two ways in which

the interpretation may influence the model’s extensionality: stable mod-

els are totally immune, in the sense that they have no better or worse in-

terpretations via bijective representations, while unstable models have no

maximum, nor minimum, interpretation via bijective representations (see

the illustration in Figure 3.2). When allowing non-bijective representations,

the picture is different – there might be a complete model with interpre-

tations that are strictly contained in its original extensionality (see Fig-

ure 3.3). Interpretation-completeness and interpretation-stability, as well

as some means for getting maximal interpretations, are investigated in Sec-

tion 3.2.

In Section 3.3, we check for the completeness of some standard models.

Turing machines and the recursive functions are shown to be complete, while

two-counter machines and the untyped lambda calculus (over all lambda

terms) are incomplete. As for hypercomputational models, they might be

incomplete, though those preserving the closure properties of the recursive

functions are ensured to be interpretation-complete.

Comparing computational power. It is common practice to compare

the computational power of different models of computation. For example,

the recursive functions are considered to be strictly more powerful than

the primitive recursive functions, because the latter are a proper subset of

the former, which includes Ackermann’s function (see, for example, [45, p.

92]). Side-by-side with this “containment” method of measuring power, it is

also standard to base comparisons on interpretations over different domains

[17, 38, 44]. For example, one says that the (untyped) lambda calculus is

as powerful – computationally speaking – as the partial recursive functions,

because the lambda calculus can compute all partial recursive functions by

encoding the natural numbers as Church numerals.

The problem is that unbridled use of these two distinct ways of compar-

ing power allows one to show that some computational models are strictly

11



stronger than themselves!

We define a comparison notion over arbitrary domains based on model in-

terpretations. With this notion, model B is strictly stronger than A if B has

an interpretation that contains A, whereas A cannot contain B under any

interpretation. We provide, in Section 4.1, three variants of the comparison

notion, depending on the allowed interpretations. In Sections 4.1.1 and 4.1.2

we extend the notion to non-deterministic models, and to interactive mod-

els. We continue, in Section 4.2, with some results on the relations between

power comparison, isomorphism and completeness. In Section 4.3, we use

the notion to compare some standard models. In Section 4.4 we redefine the

comparison notion, using category-theory tools.

We follow this, in Chapter 5, with some conceptual discussions and jus-

tifications for the comparison notions.

Effective computation. Let f be some decision function (a Boolean-

valued function) over an arbitrary countable domain D. What does one

mean by saying that “f is computable”? One most likely means that there

is a Turing machine M , such that M computes f , using some string repre-

sentation of the domain D. But what are the allowed string representations?

Obviously, allowing an arbitrary representation (any injection from D to Σ∗)

is problematic – it will make any decision function “computable”. For ex-

ample, by permuting the domain of machine codes, the halting function can

morph into the simple parity function, which returns true when the input

number is even, representing a halting machine, and false otherwise. Thus,

under a “strange” representation the function becomes eminently “com-

putable” (see Section 6.1). Another approach is to allow only “natural” or

“effective” representations. However, in the context of defining computabil-

ity, one is obliged to resort to a vague and undefined notion of “naturalness”

or of “effectiveness”, thereby defeating the very purpose of characterizing

computability.

Our approach to overcoming the representation problem is to ask about

effectiveness of a set of functions over the domain of interest, rather than of

a single function (Section 6.1). As Myhill observed [34], undecidability is a

property of classes of problems, not of individual problems. In this sense, the

halting function is undecidable in conjunction with an interpreter (universal

machine) for Turing machine programs that uses the same representation.

The Church-Turing Thesis, interpreted accordingly, asserts that there is no

effective computational model that is more inclusive than Turing machines.

Nonetheless, there might have been a serious problem due the sensitivity

of models to the domain interpretation (see Chapter 2). Fortunately, this

12



cannot be the case with Turing machines (nor with the recursive functions),

as they are interpretation-complete (Theorem 31). Hence, the Church-

Turing Thesis is well-defined for arbitrary computational models.

Due to this completeness of Turing machines, we can also sensibly define

what it means for a string representation of a constructible domain to be

“effective” (Section 6.2). Such a representation ρ is effective when the do-

main’s constructing functions are Turing computable via ρ (Definition 94).

Hence, one may ask about the effectiveness of a single function over a con-

structible domain, provided that the means of construction of the domain

are defined and are computable.

Axiomatizing effectiveness. Equipped with a plausible interpretation

of the Church-Turing Thesis over arbitrary domains, we investigate, in Sec-

tion 6.3, the general class of “effective computational models”. We proffer

an axiomatization of this class, based on Yuri Gurevich’s postulates for a

sequential algorithm [24]. The thesis is then proved, in the sense that a

proof is provided that all models satisfying these axioms are of equivalent

power to, or weaker than, Turing machines.

Gurevich’s postulates are a natural starting point for computing over

arbitrary domains. They are applicable for computations over any mathe-

matical structure and aim to capture any sequential algorithm. Neverthe-

less, while the computation steps are guaranteed to be algorithmic, that is,

effective, the initial states are not. In addition, the postulates refer to a sin-

gle algorithm, while effectiveness should consider, as explained above, the

whole computational model. We address the effectiveness of the initial state

by adding a fourth axiom to the three of Gurevich. The effectiveness of an

entire computational model is addressed by providing a minimal criterion

for two sequential algorithms to be in the same model.

This direction of research follows Shoenfield’s suggestion [41, p. 26]:

[I]t may seem that it is impossible to give a proof of Church’s

Thesis. However, this is not necessarily the case.. . . In other

words, we can write down some axioms about computable func-

tions which most people would agree are evidently true. It might

be possible to prove Church’s Thesis from such axioms.

In fact, Gödel has also been reported (by Church in a letter to Kleene cited

by Davis in [18]) to have thought “that it might be possible . . . to state

a set of axioms which would embody the generally accepted properties of

[effective calculability], and to do something on that basis”.

13



Thanks to Gurevich’s Abstract State Machine Theorem, showing that

sequential abstract state machines (ASMs) capture all (ordinary, sequential)

algorithms (those algorithms that satisfy the three Abstract State Machine

postulates), we get a third definition of an effective computational model: A

model that consists of ASMs that share initial states satisfying the initial-

state axiom.

The specifics of our effectiveness axiom may perhaps be arguable. Nev-

ertheless, it demonstrates the possibility of such an axiomatization of effec-

tiveness for arbitrary domains, and provides evidence for the validity of the

Church-Turing Thesis, regardless of underlying data structure and internal

mechanism of the particular computational model.

The relationship of the three approaches to characterizing effectiveness

over arbitrary domains is summarized in Section 6.3.3 and depicted in Fig-

ure 6.1.

Related work. Usually, the handling of multiple domains in the literature

is done by choosing specific representations, like Gödel numbering, Church

numerals, unary representation of numbers, etc. This is also true of the usual

handling of representations in the context of the Church-Turing Thesis.

A more general approach for comparing the power of different computa-

tional models is to allow any representation based on an injective mapping

between their domains. This is done, for example, by Rogers [38, p. 27],

Sommerhalder [44, p. 30], and Cutland [17, p. 24]. A similar approach is

used for defining the effectiveness of an algebraic structure by Rice [37], Ra-

bin [35], Fröhlich and Shepherdson [21], and Mal’tsev [29]. Our notion of

comparing computational power (Definition 52) is based on this approach.

Richard Montague [32] raises the problem of representation when ap-

plying Turing’s notion of computability to other domains, as well as the

circularity in choosing a “computable representation”. His citation is given

in Section 6.1.

Stewart Shapiro [40] raises the very same problem of representation

when applying computability to number-theoretic functions. He suggests

a definition of an “acceptable notation” (string representation of natural

numbers), based on some intuitive concepts. We discuss his notion in Sec-

tions 6.1 and 6.2.

Klaus Weihrauch [50, 51] deals heavily with the representation of ar-

bitrary domains by numbers and strings. He defines computability with

respect to a representation, and provides justifications for the effectiveness

of the standard representations. We elaborate on his justifications in Sec-

tion 6.2.

14



Our definition of an “effective representation” (Definition 94) resem-

bles Shapiro’s notion of “acceptable notation” and goes along the lines of

Weihrauch’s justifications for the effectiveness of the standard representa-

tions. We compare between these approaches in Section 6.2.

As for the axiomatization of effectiveness, several different approaches

have been taken over the years. Turing [48] already formulated some prin-

ciples for effective sequential deterministic symbol manipulation: finite in-

ternal states; finite symbol space; external memory that can be represented

linearly; finite observability; and local action.

Robin Gandy [22], and later Sieg and Byrnes [43], define a model whose

states are described by hereditarily finite sets. Effectiveness of Gandy ma-

chines is achieved by bounding the rank (depth) of states, insisting that they

be unambiguously assemblable from individual “parts” of bounded size, and

requiring that transitions have local causes.1

In [19], Dershowitz and Gurevich provide an axiomatization of Church’s

Thesis based on the Abstract State Machine Thesis. They handle only

numeric functions, ignoring the issue of effective computation over arbitrary

domains, but allowing the use of domains richer than just the numbers.

New results. To the best of our knowledge, our work in [10, 8, 11] was

the first to point out and handle the possible influence of the representa-

tion on the extensionality of computational models. In [12] we developed

our interpretation of the Church Turing Thesis, based on our work on the

interpretation of computational models.

Most of the results given in this thesis are published in papers of the

author and his supervisor. They are roughly divided as follows:

• Chapter 2 (except for Sections 2.3.1, 2.4) – in [10];

• Chapter 3 (except for Sections 3.3.4, 3.3.5, 3.4) – in [7];

• Chapter 4 (except for Section 4.4) – in [10, 8, 11, 7];

• Chapter 5 – in [8, 11];

• Chapter 6 – in [9, 12]

Most of the results in Chapter 2 and some preliminary results of Chap-

ters 3 and 4 were already given in the author’s M.Sc. thesis.

1The explicit bound on rank is removed in Sieg’s more recent work [42].
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Terminology. We refer to the natural numbers, denoted N, as including

zero, and denote by N
+ the natural numbers excluding zero. When we

speak of the recursive functions, denoted REC, we mean the partial recursive

functions. Similarly, the set of Turing machines, denoted TM, includes

both halting and non-halting machines. We use the term “domain” of a

computational model and of a (partial) function to denote the set of elements

over which it operates, not only those for which it is defined. By “image”, we

mean the values that a function actually takes: Im f := {f(x) | x ∈ dom f}.

16



Chapter 2

The Sensitivity of Models to

the Domain Interpretation

Computational models. Our research concerns computational models.

Obviously, a computational model should perform some computation; how-

ever demarcating a clear border between what is a computational model and

what is not is problematic. Accordingly, for achieving maximum generality,

we do not want to limit computational models to any specific mechanism;

hence, we allow a model to be any object, as long as it is associated with a

set of functions that it computes.

As models may have non-terminating computations, we deal with sets

of partial functions. For convenience, we assume that the domain and range

(co-domain) of functions are identical. For simplicity, we mainly deal with

deterministic computational models. Most of our definitions and theorems

can be directly extended to non-determinism, while the more involved ones

are handled in Section 4.1.1.

Definition 1 (Computational Model).

• A domain D is any set of elements.

• A computational model A over domain D is any object associated with

a set of partial functions f : Di → D, for an arity i ∈ N
+. This set

of functions is called the extensionality of the computational model,

denoted [[A]].

• We write dom A for the domain over which model A operates.

In what follows, we often speak of a “submodel” or a “supermodel” of a

model, referring to the containment relation between their extensionalities:

17



Definition 2 (Submodel and Supermodel).

• A computational model A is called a submodel of a model B if [[A]] ⊆

[[B]]. In such a case we also refer to B as a supermodel of A.

• A computational model A is called a strict submodel of a model B if

[[A]] ( [[B]]. In such a case we also refer to B as a strict supermodel

of A.

In the following sections we explore the sensitivity of models to domain

interpretations, ending up with a sufficient and necessary condition for a

“harmless representation” (see Figure 1.2).

2.1 Injective representations

Injective representations are the most frequently used ones. The standard

decimal and binary notations of the natural numbers are injective (they

are not bijective since leading zeros are ignored). Comparisons between

computational models are usually done by injective encodings; for example:

Church numerals and Gödel numbering are used for comparing the recursive

functions and λ-calculus.

We begin by defining a “representation” to be an injective mapping.

Definition 3 (Representation).

Domain. Let DA and DB be two domains (arbitrary sets of atomic ele-

ments). A representation of DA over DB is an injection ρ : DA → DB

(i.e. ρ is total and one-one).

Function and Relation. Representations ρ naturally extend to functions

and relations f , which are sets of tuples of domain elements: ρ(f) :=

{〈ρ(x1), . . . , ρ(xn)〉 | 〈x1, . . . , xn〉 ∈ f}.

Model. Representations also naturally extend to (the extensionalities of)

computational models, which are sets of functions: ρ([[B]]) :=

{ρ(f) | f ∈ [[B]]}.

The representation concept is illustrated in Figure 2.1 and 2.2.

An almost dual concept to representation is “interpretation” (see Fig-

ures 2.1 and 2.3):
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ρ(5) =“101”

5 is represented by “101” via ρ

[[“101”]]ρ = 5

“101” is interpreted as 5 via ρ

“0011” 6∈ Im ρ

“0011” has no interpretation via ρ

N

{0, 1}∗

5 6

“101” “110”

ρ

“0011”

Figure 2.1: Domain representation. The natural numbers are represented

by binary strings via the representation ρ

The successor function s

is represented by ρ(s)

ρ(s) = ρ◦s◦ρ−1

ρ(s)(“101”) = “110”

ρ(s) is undefined outside of Im ρ

N

{0, 1}∗

5 6

“101” “110”

ρ

s

ρ(s)

Figure 2.2: Function representation. The numeric functions are represented

by string functions via the representation ρ
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Definition 4 (Interpretation). Assume a representation ρ : DA → DB.

Then:

1. The interpretation of a domain element b ∈ DB via the representation

ρ, denoted [[b]]ρ, is the element ρ−1(b) of DA. If b 6∈ Im ρ then its

interpretation via ρ is undefined.

2. The interpretation of a function g over DB via the representation ρ,

denoted [[g]]ρ, is the function ρ−1(g) over DA, which is ρ−1◦g◦ρ. If

g◦ρ(a) 6∈ Im ρ for some element a ∈ DA then [[g]]ρ is a partial function,

where [[g]]ρ(a) is undefined.

3. The interpretation of a computational model B via the representation

ρ, denoted [[B]]ρ, is the set of functions ρ−1([[B]]), which is {[[g]]ρ | g ∈

[[B]]}.

4. When considering only total functions, the interpretation of a total

computational model B via the representation ρ, denoted [[B]]ρ, is the

set of functions {[[g]]ρ | g ∈ [[B]] and [[g]]ρ is total}.

“Interpretation via ρ” is the reverse of “representation via ρ”, up to the

image of the representation (Im ρ). When the representation ρ is bijective

we have that “interpretation via ρ” is exactly as “representation via ρ−1.”

Interpretation and extensionality share the same notation. Indeed, the

interpretation of some model B via a representation ρ : DA → DB is its

extensionality over the domain DA, which results from the representation ρ.

Note that the extensionality [[A]] of a model A is its interpretation [[A]]ι via

the identity representation ι.

Proposition 5. For all models A and B and representations ρ, [[A]] ⊆ [[B]]

implies that [[A]]ρ ⊆ [[B]]ρ.

Sensitivity. Injective representations, however, are prone to hide some

computational power. Below is a simple example of such a case.

Example 6. The set of “even” recursive functions (R2) can be interpreted

as the set of all the recursive functions (REC), by mapping the original

natural numbers into the even numbers

ρ := λn.2n

R2 :=

{
λn.

{
2f(n/2) n is even

n otherwise

}
| f ∈ REC

}

We have that [[R2]]ρ = REC ) R2.
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The function g

is interpreted as [[g]]ρ

[[g]]ρ = ρ−1◦g◦ρ

[[g]]ρ(5) = 6

The behavior of g outside of Im ρ

does not influence

its interpretation via ρ

N

{0, 1}∗

5 6

“101” “110”

ρ

“01” “00”

[[g]]ρ

g

g

Figure 2.3: Function interpretation. The string functions are interpreted as

numeral functions via the representation ρ

The above anomaly does not appear only with “synthetic” models, but

also with some standard ones. An example of such a model is the standard

two-counter machine model (see Section 3.3.4).

2.2 Bijective representations

The previous section demonstrated the sensitivity of models to injective

representations. One may ask whether the restriction of representations

to bijective mappings might solve the problem. We show that the answer

is “no”, obtaining that a model might be isomorphic to some of its strict

supermodels.

Definition 7 (Isomorphism). Models A and B (or their extensionalities)

are isomorphic, denoted A ∼= B (or [[A]] ∼= [[B]]), if there is a bijection π

such that [[A]]π = [[B]].

In the rest of this section we provide an example of such a model.

Since this phenomenon looks somewhat mysterious, we present in detail the

model’s mechanism and extensionality, as well as a bijective representation

via which the model’s interpretation strictly contains its original extension-

ality. In addition, we provide three bijective representations of numbers by

strings via which we get three numeric interpretations of the model with

strict containment between them.

The computational model is a “tailored” one, named “triangular ma-

chines” and denoted Tr. We currently don’t have an example of a well-known
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model having the property under discussion.

Triangular machines – the mechanism.

• The machines get as input, and return as output, a finite string over

the alphabet {a, b}.

• Each machine has a finite program, which must start with the com-

mand Initialize. This command changes all the letters of the input

string to the letter “a”.

• The program may have, in addition, any finite number of commands of

the form Set the kth letter to b, where k is any positive natural

number. This command changes the kth letter from the right to “b”

if the string has at least k letters, and does nothing otherwise.

• Another command is Add k a, where k is any positive natural number.

The command adds k instances of “a” to the left of the string.

A couple of examples:

Example 8. The program

Initialize

Set the second letter to b

Set the third letter to b

Changes the input string “ababa” into “aabba”, the input “ab” into “ba”,

and “b” into “a”.

Example 9. The program

Initialize

Add 3 a

Set the 4th letter to b

Set the 5th letter to b

Changes the input string “ababa” into “aaabbaaa”, the input “ab” into

“bbaaa”, and “a” into “baaa”.

Triangular machines – the extensionality. Imagine the finite strings

over {a, b} arranged in rows according to their length, and within each row

according to their lexicographic order, as illustrated in Figure 2.4 (having a

triangular shape).
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0 ǫ

1 a b

2 aa ab ba bb

3 aaa aab aba abb baa bab bba bbb

4 aaaa aaab . . .
...

. . .

0 1 2 3 4 5 6 . . .

Figure 2.4: A triangular arrangement explaining the original extensionality

0 ǫ

1 b a

2 bb aa ab ba

3 bbb aaa aab aba abb baa bab bba

4 bbbb aaaa aaab . . .
...

. . .

0 1 2 3 4 5 6 . . .

Figure 2.5: Interpretation via the representation τ

0 0

1 1 2

2 3 4 5 6

3 7 8 9 10 11 12 13 14

4 15 16 . . .
...

. . .

0 1 2 3 4 5 6 . . .

Figure 2.6: Interpretation via the representation π

0 0

1 2 1

2 6 3 4 5

3 14 7 8 9 10 11 12 13

4 30 15 . . .
...

. . .

0 1 2 3 4 5 6 . . .

Figure 2.7: Interpretation via the representation η
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The extensionality of triangular machines is [[Tr]] = fi,j (i, j ∈ N), where

fi,j(s) changes the input string s into the ith string in the jth subsequent

row to s’s row, wrapping around for overly large i.

For example, the program of Example 9 computes the function f24,3,

while the program having only the Initialize command computes the

function f0,0.

Generally, we can translate every program P to an fi,j-function in the

following way:

1. Remove any duplicate commands of the form Set the kth letter

to b. (Duplicated commands of the form Add k a are not redundant,

though they can be changed to a single command.)

2. Set the indices i, j to zero (i := 0, j := 0) by the Initialize. com-

mand.

3. For every command Set the kth letter to b add 2k−1 to the index

i (i := i+ 2k−1).

4. For every command Add k a add k to the index j (j := j + k).

Triangular machines – numeric interpretations. Representing the

natural numbers by strings would yield a numeric interpretation of our

model. Let π : N → {a, b}∗ be the bijective representation obtained by

enumerating the strings over {a, b} by their length and lexicographic order

(See Figure 2.8). The numeric interpretation is analogous to the string ex-

tensionality, jumping between rows and columns, just that the elements are

natural numbers. The triangular diagram will take an analogous form, as

illustrated in Figure 2.6

The interpretation of the model via the representation π is:

[[Tr]]π = gi,j(i, j ∈ N), where

gi,j(n) = 2row(n)+j − 1 + i mod (2row(n)+j), and

row(n) = ⌊log2(n+ 1)⌋

One may think of a different bijective representation η : N → {a, b}∗,

presented in Figure 2.8.

It turns out that the interpretation via η strictly contains the interpre-

tation via π (that is, [[Tr]]η ) [[Tr]]π), adding the functions {λn.2row(n)+j+1−

2 | j ∈ N}. The (infinitely many) additional functions can be visualized in

Figure 2.6 as jumping to the last (rightmost) number in the jth subsequent

row to the row of the input number.
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π η ξ

0 ǫ ǫ ǫ

1 a b b

2 b a a

3 aa ab bb

4 ab ba aa

5 ba bb ab

6 bb aa ba

7 aaa aab bbb

8 aab aba aaa

9 aba abb aab

10 abb baa aba

11 baa bab abb

12 bab bba baa

13 bba bbb bab

14 bbb aaa bba

15 aaaa aaab bbbb

16 aaab aaba aaaa
...

...
...

...

Figure 2.8: Various bijective representations of numbers by strings
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Analogously, we can choose a different representation, having fewer

functions. For example, the model’s interpretation via the representation

ξ : N → {a, b}∗, presented in Figure 2.8, lacks infinitely many functions,

visualized in Figure 2.6 as jumping to the first (leftmost) number in the jth

subsequent row to the row of the input number.

For a model that suffers from the influence of a bijective representation,

as does the triangular machine model, the process above can be performed

infinitely. That is, we can always choose a different representation via which

we get more functions or fewer functions.

Isomorphism to a strict supermodel. Similarly to the numeric inter-

pretations above, we can provide a bijective representation of the model’s

original domain, via which the model’s interpretation strictly contains its

original extensionality. Let τ : {a, b}∗ → {a, b}∗ be the bijective represen-

tation τ := η◦π−1. The triangular view obtained by this representation is

illustrated in Figure 2.5.

We saw that [[Tr]]η ) [[Tr]]π. Since isomorphism preserves containment,

it follows that π([[Tr]]η) ) π([[Tr]]π), which is π(η−1([[Tr]])) ) π(π−1([[Tr]])),

which is (η◦π−1)−1([[Tr]])) ) [[Tr]], which is [[Tr]]η◦π−1 ) [[Tr]], getting that

[[Tr]]τ ) [[Tr]].

We have got an interpretation of the model that strictly contains its

original extensionality. Note that since the representation is bijective, it

follows that the model’s extensionality is isomorphic to a strictly larger set of

functions, or in other words, the model is isomorphic to a strict supermodel

of itself.

Analogously, we may choose a representation via which the model’s in-

terpretation is strictly contained in its extensionality: [[Tr]]π◦η−1 ( [[Tr]].

It will be shown, in Chapter 3, that this process is infinite and symmetric

(Theorem 18) – once the model is sensitive to bijective representations, we

can always choose a different representation via which we get more, or less,

functions.

2.3 Harmless representations

Are there “harmless representations”, via which all models are “protected”

from having better and worse interpretations? The answer is “yes”, however

this family of representations is too limited for being really useful. It is

exactly the family of what we call “narrow” permutations:
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Definition 10 (Narrow Permutation). A permutation π : D → D is narrow

if all its orbits (cycles) are bounded in length by some constant, that is, if

∃k ∈ N. ∀x ∈ D. |{πn(x) : n ∈ N}| ≤ k.

Proposition 11. A permutation π : D → D is narrow iff there is a positive

constant k ∈ N
+, such that for all x ∈ D we have πk(x) = x. In other

words, if πk = ι.

Proof. One direction is trivial. For the second, if π’s orbits are bounded by

k, we have πk!(x) = x for every x ∈ D.

Theorem 12. For every representation ρ : D → D, there are models A and

B such that [[A]]ρ = [[B]] ) [[A]], if and only if ρ is not a narrow permutation.

We generally consider representations to be injective, however for making

the above theorem a more comprehensive one, we also handle in this proof

the case of non-injective representations.

Proof. Suppose π is a narrow permutation with orbit size bounded by k, and

assume by contradiction the existence of models A and B such that [[A]]π =

[[B]] ) [[A]]. For every function g ∈ [[B]], there is, by assumption, some

function f1 ∈ [[A]], such that π−1◦f1◦π = g. Since f1 is also in [[B]], there

is, by k-fold repetition, a function fk ∈ [[A]], such that fk = π−k◦fk◦π
k = g.

Therefore, [[B]] = [[A]], contradicting the assumption.

For the other direction, we must consider three cases: (i) non-surjective

representations; (ii) surjective representations that are not injective; and (iii)

bijections with no bound on the length of their orbits. We prove each case

by constructing a computational model A over domain D that is interpreted

as a strict supermodel of itself via the given representation ρ.

Case (i). Suppose ρ is non-surjective, and let c ∈ D \ Im ρ. Define

[[B]] = {λx.ρi(c) | i ∈ N} and [[A]] = [[B]] \ {λx.c}. Since c 6∈ Im ρ, it follows

that [[A]] ( [[B]]. Since for all i we have that ρ−1◦λx.ρi+1(c)◦ρ = λx.ρi(c), it

follows that [[A]]ρ ⊇ [[B]].

Case (ii). Suppose that ρ is surjective, but not injective, and let c ∈ D

be such that ρ(a) = ρ(b) = c, for some a 6= b in D. Since ρ is a (single-

valued) function, it follows that at least one of a and b, say a, is not in

{ρi(c) | i ∈ N}. So, let [[B]] = {λx.ρi(a) | i ∈ N} and [[A]] = [[B]] \ {λx.a}.

By the same argument as in case (i), we have [[A]]ρ ⊇ [[B]] ) [[A]].

Case (iii). Suppose that ρ is an unbounded-orbit permutation. Let σ be

a function that chooses a representative within each orbit: for all x, y ∈ D,

σ(x) = σ(y) iff ρi(x) = y for some i ∈ Z. Define [[B]] = {λx.ρi(σ(x)) | i ∈ N}

and [[A]] = [[B]] \ {λx.σ(x)}. Since the orbits of ρ are unbounded, it must be

that [[A]] ( [[B]]. By the argument of case (i), we again have [[A]]ρ ⊇ [[B]].
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The family of narrow permutations is very limited and cannot be used

as the only mean of interpreting models over different domains. Moreover,

this family is not closed under composition. That is, there are narrow per-

mutations π and η such that π◦η is not narrow! This situation is very

problematic, since interpretations are often used in the context of order

relations, for example when saying that two models have the same exten-

sionality up to the domain interpretation. Any equivalence or order relation

should be transitive, which is not the case if representations are limited to

narrow permutations.

2.3.1 Purely harmless representations

Proceeding in the above direction of seeking a family of representations that

would be harmless and closed under functional composition leads us to look

for some strict subset of the narrow permutations. However, considering

that there are many such (maximal) subsets, which is a reasonable choice?

It turns out that there is a clear distinction between two types of narrow

permutations – the “problematic” and the “non-problematic” ones. For

every problematic narrow permutation ρ there is a simple (problematic)

narrow permutation η, such that ρ◦η is not narrow. On the other hand,

a non-problematic narrow permutation π guarantees that for every narrow

permutation ξ we have that ξ◦π and π◦ξ are narrow.

The family of non-problematic narrow permutations is the “almost iden-

tity” permutations (defined bellow), while the rest are problematic.

Definition 13 (Almost Identity). A permutation π : D → D is almost

identity if |{x ∈ D | π(x) 6= x}| <∞.

Theorem 14. For every narrow permutation ξ and almost identity permu-

tation π over domain D, we have that ξ◦π and π◦ξ are narrow permutations.

Proof. Suppose that the permutation π changes k elements of a domain D,

for some constant k ∈ N. Define S = {x ∈ D | π◦ξ(x) 6= ξ(x)}. Since π

changes only k elements of D, it follows that |S| = k. Thus, a cycle of π◦ξ

is a combination of at most k cycles of ξ, therefore it is bounded. By the

same argument, ξ◦π is a narrow permutation.

Theorem 15. For every narrow permutation ρ that is not almost identity

there is a narrow permutation η with cycles of length ≤ 2, such that ρ◦η is

not a narrow permutation.

Proof. Since ρ is not almost identity, it follows that there is a denumerable

set S = {C1, C2, . . .} of cycles of ρ of length ≥ 2. Let m : S → D be a
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function from the set of cycles S to the domain D, such that m(Ci) ∈ Ci,

for all Ci ∈ S. Abbreviate, mi = m(Ci). Define the permutation

τ(x) =





mi+1 x = ρ(mi) for some i > 0

ρ(mi−1) x = mi for some i > 1

x otherwise

Clearly, the cycles of τ are of length ≤ 2. Since for every i ∈ N we have

that (τ◦ρ)i(m1) 6= mi, it follows that τ◦ρ is not a narrow permutation.

The above results suggest that sticking to harmless representations is not

a viable direction, as the concept of interpreting models of different domains

almost completely evaporates.

2.4 Models with standard computational proper-

ties

It was shown above that restricting the family of applicable representations

cannot solve the sensitivity problem. A different approach to this problem is

to restrict the definition of a computational model. Nonetheless, in order to

allow a variety of internal mechanisms, we seek a restriction on the model’s

extensionality. We consider four restrictions: (i) closure under functional

composition; (ii) inclusion of the identity function; (iii) inclusion of all con-

stant functions; and (iv) the successor function for models operating over

N.

In this section we show that the sensitivity problem remains, even when

considering only models with all the above properties and allowing only

bijective representations.

Closure under functional composition. Denote by cl(F) the set F of

functions closed under functional composition. A model closed under func-

tional composition can still be isomorphic to a strict supermodel of itself.

For example, Triangular machines (Section 2.2) are such a model. Further-

more, considering only models closed under functional composition does not

change the sufficient and necessary condition for a harmless representation

(Theorem 12), as all models involved in the proof are closed under functional

composition.

The identity and constant functions. Adding, or removing, the iden-

tity function ι from a model has no influence on its sensitivity to any rep-
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0 1 2 3 4 5 6 7 8 9 . . .

Figure 2.9: The permutation π of Example 16

resentation, as ρ−1◦(f◦ι)◦ρ = ρ−1◦(ι◦f)◦ρ = ρ−1◦f◦ρ, for every injection ρ

and function f .

Let K be the set of all constant functions over a domain D. Adding, or

removing, K from a model A over D, such that A ∩ K ∈ {K, ∅}, has no

influence on the sensitivity of A, as [[A◦K]]ρ = [[K◦A]]ρ = K, with respect to

total functions, for every injection ρ and model A.

The successor function. It turns out that a model including the succes-

sor function and closed under functional composition can still be isomorphic

to a strict supermodel of itself. We demonstrate this with the following

example:

Example 16. Define the permutation π over N,

π(n) :=





1 n = 0

n+ 2 n is odd

n− 2 n is even

The permutation π is illustrated in Figure 2.9.

Let s be the successor function over N, and let A be a computational

model with the extensionality [[A]] := {πi(s) | i ∈ N}. Let B be the com-

putational model obtained from A by closure under functional composition.

That is, [[B]] := cl([[A]]).

We show hereby that B is isomorphic to a strict supermodel of itself, by

showing that [[B]]π ) [[B]]. We show that (i) [[B]]π ⊇ [[B]]; and that (ii) there

is a function, s′ := π−1◦s◦π, such that s′ ∈ [[B]]π while s′ 6∈ [[B]].

(i) For showing that [[B]]π ⊇ [[B]] we need to show that for every function f ∈

[[B]] there is a function f ′ ∈ [[B]] such that [[f ′]]π = f . Since π is a bijection,

it follows that f ′ = π(f) = π◦f◦π−1. Now, a function f ∈ [[B]] is of the form

πi1(s)◦πi2(s)◦ . . . ◦πin(s), and πi(s) = πi◦s◦π−i. Hence, a function f ∈ [[B]]

is of the form πi1◦s◦π−i1+i2◦s◦π−i2+i3 · · ·π−in−1+in◦s◦π−in, for some n ∈

N. Accordingly, f ′ = πi1+1◦s◦π−i1+i2◦s◦π−i2+i3 · · ·π−in−1+in◦s◦π−(in+1).

Clearly, f ′ = πi1+1(s)◦πi2+1(s)◦ . . . ◦πin+1(s). Thus, f ′ ∈ [[B]].

(ii) Define s′ := π−1◦s◦π = [[s]]π. By definition, s′ ∈ [[B]]π. Since

(πi◦s◦π−i)(0) is odd, for all i ∈ N, and s′(0) = 4, it follows that s′ 6∈ [[A]].

Since every function f ∈ [[B]]\ [[A]] is composed of at least two functions that

are composed of s and some permutations, it follows that |N \ Im f | ≥ 2 >

1 = |N \ Im s′|. Thus, s′ 6∈ [[B]] \ [[A]], and therefore s′ 6∈ [[B]].
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Chapter 3

Organizing Model

Interpretations

For examining the influence of the domain interpretation on a model we

should compare its different interpretations. Accordingly, we are interested

only in the model’s interpretations over its original domain. Its interpreta-

tions over other domains are isomorphic to those over its original domain,

as long as it is not a domain of a lower cardinality. For example, a model

has two interpretations with strict containment between them if and only if

it has such two interpretations over its original domain. A demonstration

of shifting between the model’s original domain and a different domain is

given in Section 2.2.

We are interested in the containment relation between interpretations.

That is, examining when some interpretations are better than others in the

sense of strictly containing them. Accordingly, the interpretations of a model

A form a partially ordered set with respect to containment (illustrated in

Figure 3.1).

Viewing interpretations as a partially ordered set raises a few natural

questions:

• How varied can these partially ordered sets be?

• Are there always maximal interpretations?

• Are there models already in their maximal interpretation (termed

“interpretation-complete”)?

• How does one choose a proper interpretation?

In what follows we will shed some light on the subject, considering the

above questions and others. In Section 3.1 we answer the first two ques-
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



Restricting to

bijective

representations

[[A]]

[[A]]τ

[[A]]ρ

[[A]]ξ

[[A]]π

Maximal

interpretations

Minimal

interpretations

Points are

interpretations

A line denotes

containment

Figure 3.1: An illustration of the partially ordered set of interpretations of

a model A

tions, showing how varied the set of interpretations can be. In Section 3.2

we answer the second pair of questions, dealing with the interpretation-

completeness of models. Interpretation-completeness is the property that

we payed the most attention to in our research, as it assures that the origi-

nal model’s extensionality is already its best interpretation.

3.1 The variety of interpretations

In general, the set of interpretations may be very varied:

• Some interpretations may be better than the original extensionality,

while others are worse.

• There might be infinitely many interpretations each contained in the

next.

• There might be models with no maximal interpretation!

• Non-bijective interpretations might sometimes add to bijective ones,

while in other cases only spoil.

• There are models already having their maximal interpretation

(“interpretation-complete”) or at least so with respect to bijective rep-

resentations (“interpretation-stable”).

We prove the above assertions below, and investigate in detail the com-

pleteness and stability properties in the next section (Section 3.2).
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A simple example of how different interpretations may enlarge or de-

crease the original extensionality is given in Example 6. Interpreting the

model via the representation λn.2n enlarges the original extensionality, pro-

viding all the recursive functions. On the other hand, interpreting the model

via the representation λn.2n+1 decreases the original extensionality, leaving

only the identity function.

We saw, in Section 2.2, that a model can be isomorphic to a strict su-

permodel of itself. In such a case, there are infinitely many interpretations

enlarging the original extensionality, as well as infinitely many decreasing

it, while each is contained in the next. We prove it below with the help of

the following lemma. Note that this is true for bijective representations, but

not necessarily for injective representations.

Lemma 17. For all models A and B and bijections π, [[A]] ( [[B]] implies

that [[A]]π ( [[B]]π and π([[A]]) ( π([[B]]).

Proof. Since π is a bijection, it follows that π−1◦f◦π 6= π−1◦g◦π, for every

f 6= g. Thus, [[B]]π makes an injection between the set of functions in the

original extensionality and the set of functions in the interpretation (i.e.

every function of B is interpreted as a unique function via π). Therefore,

[[B \ A]]π ∩ [[A]]π = ∅. As for the second claim, when restricting to bijec-

tive representations, a model representation π([[A]]) is exactly as the model

interpretation [[A]]π−1 via the inverse representation.

Theorem 18. If A is a model and π a bijection such that [[A]] ( [[A]]π, then

for every i ∈ N we have that [[A]]πi ( [[A]]πi+1 and [[A]]π−i ) [[A]]π−(i+1).

Proof. By assumption, [[A]] ( [[A]]π. Thus, it follows from Lemma 17 that

[[A]]π ( [[[[A]]π]]π. From the definition of model interpretation, we have that

[[[[A]]πi ]]π = [[A]]πi+1 . Hence, by induction on i we get that [[A]]πi ( [[A]]πi+1 .

As for the second part of the theorem, since π is a bijection, it follows that

[[[[A]]π]]π−1 = [[A]]. Therefore, by the same argument of the first part, we have

that [[A]]π−i ) [[A]]π−(i+1) .

Corollary 19. If A is a model for which there is no bijection π such that

[[A]] ( [[A]]π, then there is also no bijection η such that [[A]] ) [[A]]η.

The above theorem shows that once a model has a better interpretation

via a bijective representation it cannot have a maximal interpretation via

a bijective representation. Nevertheless, it might have a maximal interpre-

tation via an injective representation. There are, however, models with no

maximal interpretation at all.

We prove the above, with the help of the following a lemma.
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Lemma 20. Interpretations via bijective representations preserve the struc-

ture of every function. Specifically, for every function f over domain D and

bijection π : D′ → D, we have that:

1. f is injective iff [[f ]]π is.

2. |D \ Im f | = |D′ \ Im [[f ]]π|

3. f is total iff [[f ]]π is.

Proof.

1. Assume that f is not injective, and let a, b ∈ D such that f(a) =

f(b). Define a′ = π−1(a) and b′ = π−1(b). We have that

[[f ]]π(a
′) = π−1◦f◦π(a′) = π−1◦f◦π(π−1(a)) = π−1◦f(a) = π−1◦f(b) =

π−1◦f◦π(π−1(b)) = [[f ]]π(b
′). Hence [[f ]]π is also not injective. As for

the other direction, if [[f ]]π is not injective with [[f ]]π(x) = [[f ]]π(y) then

f is not injective with f(π(x)) = f(π(y)).

2. If a 6∈ Im f then obviously π−1(a) 6∈ Im π−1◦f◦π, and if x 6∈

Im π−1◦f◦π then obviously π(x) 6∈ Im f . Hence, |D \ Im f | =

|D′ \ Im [[f ]]π|

3. By similar arguments.

Next, we show that there are models with no maximal interpretation.

Proposition 21. There are computational models with no maximal in-

terpretation that extends their original extensionality. That is, there is

a computational model A, such that for every representation ρ for which

[[A]]ρ ⊇ [[A]] there is a representation η such that [[A]]η ) [[A]]ρ.

Proof. We use the model A and the bijection π of Example 16, and show

that A is such a model. recall that [[A]] := {πi(s) | i ∈ N}, where s is the suc-

cessor function. By the arguments of Example 16 we have that [[A]]π ) [[A]].

Therefore, by Theorem 18, it does not have a maximal interpretation via

a bijective representation. We will show hereby that it does not have an

interpretation via a non-bijective representation that contains its original

extensionality. Hence, it will follow that it does not have a maximal inter-

pretation extending its original extensionality.

Assume, by contradiction, a non-bijective representation ρ : N → N,

such that [[A]] ⊆ [[A]]ρ, and let e ∈ N \ Im ρ. We have that [[A]] ⊆ [[A]]ρ =
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{ρ−1◦πi◦s◦π−i◦ρ | i ∈ N}. Since [[A]] has infinitely many total functions, so

should have [[A]]ρ. Thus, there are infinitely many numbers i ∈ N, such that

πi◦s◦π−i◦ρ(n) 6= e for every n ∈ N. Therefore, there are infinitely many

numbers i ∈ N, such that ρ(n) 6= πi◦s−1◦π−i(e) for every n ∈ N. From the

structure of the permutation π it follows that πi◦s−1◦π−i(e) is different for

every i, no matter what is e. Hence, there are infinitely many elements in

N \ Im ρ.

Since there are total functions in [[A]]ρ, we can choose a number k ∈ N

such that ρ−1◦πk◦s◦π−k◦ρ is a total function. By Lemma 20, we have

that πk◦s◦π−k preserves the structure of the successor function s. Specif-

ically, it is total and injective with only one element outside of its image.

Thus, for any element a ∈ N there are only finitely many elements not in

{(πk◦s◦π−k)i(a) | i ∈ N}. Now, let a ∈ Im ρ. Since ρ−1◦πk◦s◦π−k◦ρ is total,

it follows that (πk◦s◦π−k)i(a) ∈ Im ρ for every i ∈ N. This leaves only

finitely many elements outside of Im ρ, contradicting the above result that

there are infinitely many elements in N \ Im ρ. Therefore, there is no in-

jective representation via which the interpretation of A contains its original

extensionality.

From the above proof we also get that interpretations via non-bijective

representations might sometimes only decrease the model’s extensionality,

while we saw that in other cases they can further enlarge it on top of bijective

ones.

3.2 Interpretation-completeness and

interpretation-stability

We saw that the extensionality of computational models is sensitive to the

domain interpretation. There are, however, models that are already in

their maximal interpretation (called “interpretation-complete” or in short

“complete”), or at least so with respect to bijective representations (called

“interpretation-stable” or in short “stable”).

Definition 22 (Completeness). A model A is interpretation-complete if

there is no representation ρ : dom A→ dom A such that [[A]]ρ ) [[A]].

The completeness property above is the one that interests us the most.

It simply says that the model already has its best interpretation.

Note that when considering only total functions, the interpretation of a

model is also defined to contain only total functions. In such a case a model

35



Unstable model
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bijective

representations

[[A]]

[[A]]τ

[[A]]π

Stable model

[[A]] [[A]]π

Figure 3.2: An illustration of interpretation-stable and unstable models

is considered complete even if some interpretations can extend it with partial

functions.

Though we generally consider all injective representations, there are

also good justifications to stick to bijective representations, as briefly seen

in Chapter 2, and elaborated on in Chapters 5 and 6. Accordingly, we

also define completeness with respect to bijective representations, called

“interpretation-stability”:

Definition 23 (Stability). A model A is interpretation-stable if there is no

bijective representation π : dom A→ dom A such that [[A]]π ) [[A]].

Sticking to bijective representations, there are exactly two options for

the representation influence:

• Stable model – totally immune to the influence of bijective represen-

tations. No better or worse interpretations are possible via bijective

representations.

• Unstable model – there is no maximum, nor minimum, interpretation

via bijective representations.

The above is illustrated in Figure 3.2, and proved in Theorem 18 and Corol-

lary 19.

The general case, allowing non-bijective representations, is more varied:

• There are stable models that are incomplete.

• There might be a complete model with worse interpretations.

• Bijective representations preserve completeness.
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Figure 3.3: An illustration of an interpretation-complete model

The above is illustrated in Figure 3.3, and proved below.

Completeness obviously implies stability, but the opposite is not true. A

simple example is the set of all constant functions except for a single con-

stant function. A model having this extensionality is stable but incomplete

(Theorems 44 and 45).

Completeness assures us that the model cannot have an interpretation

better than its original extensionality. However, it might have an interpre-

tation that decreases its original extensionality.

Proposition 24. An interpretation-complete model might have an inter-

pretation decreasing its extensionality. That is, there is an interpretation-

complete model A and a representation ρ such that [[A]]ρ ( [[A]].

Proof. Let A be a model over N with the following extensionality:

[[A]] := {fk | k ∈ N} ∪ ε, where

ε is the function undefined on all elements, and

fk(n) :=

{
k n is even

⊥ otherwise

Define the representation ρ := λn.2n+1. We have that [[fk]]ρ = ρ−1◦f◦ρ = ε,

for every k. Hence, [[A]]ρ = {ε} ( [[A]]. Now, assume by contradiction that

A is incomplete. By assumption, we have a representation η such that

[[A]]η ) A. Hence, there exists i ∈ N such that [[fi]]η = f1, as well as j ∈ N

such that for all k ∈ N, [[fj ]]η 6= fk. Were η parity-preserving (i.e. η(n) is

even iff n is even), we have that [[fj ]]η = η−1◦fj◦η = fη−1(j) if j ∈ Im η and

[[fj ]]η = ε if j 6∈ Im η. Therefore, there is either an even number l such that

η(l) is odd, or an odd number m such that η(m) is even. In the first case
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we have that [[fi]]η(l) = ⊥ 6= f1(l) = 1, and in the second case we have that

[[fi]]η(m) = η−1(i) = 1 6= f1(l) = ⊥. Contradiction.

Using only bijective representations, we cannot harm the extensionality

of a complete model. This follows directly from Corollary 19, as a complete

model is also stable.

Corollary 25. Let A be a model and ρ a representation such that [[A]]ρ is

complete and [[A]]ρ ) [[A]]. Then there is no bijective representation π such

that [[A]]π = [[A]]ρ.

Corollary 26. Isomorphism preserves interpretation-stability and

interpretation-completeness. That is, let A and B be isomorphic models,

then A is interpretation-stable iff B is, and A is interpretation-complete iff

B is.

Proposition 27. A model with a finite extensionality (implementing finitely

many functions) is complete.

Complete models have interesting properties and are generally more con-

venient to work with. We elaborate on some of the properties concerning

power comparison and isomorphism in Chapter 4.

3.2.1 Getting maximal interpretations

A natural question is how to choose a proper representation for getting

a maximal interpretation. We should consider two cases, depending on

whether the relevant model is complete or not.

For an interpretation-complete model A, we can get a maximal interpre-

tation by one of the following means:

• Its original extensionality.

• Via any bijective representation.

• If A is closed under functional composition: via a representation ρ

for which there exists a total injective function f ∈ [[A]], such that

Im f = Im ρ and f−1 ∈ [[A]].

For an incomplete model:

• There is no general known criterion.

• A bijective representation cannot help.
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• If one finds a representation via which there is a maximal interpre-

tation, then he can get additional maximal interpretations with the

above techniques for complete models.

The special case of proper representations with respect to effectiveness

is considered in Section 6.2.

Most of the claims above follow directly from previous sections. We add

below the required additional theorem.

Theorem 28. Let A be a model closed under functional composition, and

let ρ : D → dom A be some representation. Then [[A]]ρ is isomorphic to

[[A]] if there is a total injective function h ∈ [[A]] such that Im h = Im ρ and

h−1↾Im h ∈ [[A]]↾Im h.

Proof. Define the function π : D → dom A by π := h−1◦ρ. Since h is a

total injection with Im h = Im ρ, it follows that π is a bijection. We shall

prove that [[A]]ρ = [[A]]π, by showing that for every function f ∈ [[A]] there is

a function g ∈ [[A]] such that [[f ]]ρ = [[g]]π and vice versa. For every function

f ∈ [[A]] define g := h−1◦f◦h. By the assumptions, g ∈ [[A]]. Now, [[g]]π =

π−1◦g◦π = ρ−1◦h◦g◦h−1◦ρ = ρ−1◦h◦h−1◦f◦h◦h−1◦ρ = ρ−1◦f◦ρ = [[f ]]ρ. By

the assumption that Im h = Im ρ, we get that the transition above from

[[g]]π to [[f ]]ρ also preserves the exact partiality of functions. The opposite

direction is analogous.

3.3 Specific models

We turn now to investigate the influence of the domain interpretation on

some well known computational models, as well as on hypercomputational

models.

3.3.1 The recursive functions

The recursive functions are interpretation-complete. Their completeness is

of special importance due to their rôle in the notion of effectiveness. This is

elaborated on in Chapter 6.

When speaking of the recursive functions we generally mean the partial

recursive functions. Yet, both the patrial and the total recursive functions

are complete. As for the latter, its completeness is with respect to total

functions. That is, its interpretations are also restricted to contain only

total functions (see Definition 4).

The completeness is of both the unary recursive functions and of the

functions of any arity.
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In Section 3.3.2, it will be shown that the recursive functions are iso-

morphic to the functions computed by Turing machines. In Section 3.3.4, it

is shown that the recursive functions are isomorphic to 3-counter machines,

while being a maximal interpretation of the incomplete 2-counter machine

model.

We start by showing that the unary recursive functions are complete.

The same proof applies to both total and partial functions.

Theorem 29. The unary recursive functions (UREC) are interpretation-

complete.

Proof. Assume [[UREC]]ρ ⊇ UREC for some injection ρ : N → N, and let s

be the successor function. There is, by assumption, a function s′ ∈ UREC,

such that [[s′]]ρ = s. That is, ρ−1◦s′◦ρ = s. Hence, s′◦ρ = ρ◦s. Since

ρ(0) is some constant and ρ(s(n)) = s′(ρ(n)), it follows that ρ is derived

by primitive-recursion from s′ ∈ UREC, thus ρ ∈ UREC. Since ρ is a

recursive injection, it follows that ρ−1 is partial recursive. By the closure

of the recursive functions to functional composition, we have that ρ−1◦f◦ρ

is recursive for every recursive function f . Therefore, [[UREC]]ρ = UREC,

showing its completeness.

The above result is easily extended to the set of all recursive functions.

Theorem 30. The partial recursive functions (REC) and the total recursive

functions are interpretation-complete.

Proof. Assume [[REC]]ρ ⊇ REC for some injection ρ : N → N. Since

interpretations do not change the arity of the functions, it follows that

[[UREC]]ρ ⊇ UREC . Hence, by the proof of Theorem 29, we have that

ρ ∈ REC. Therefore, by the closure of the recursive function to inverse

and to functional composition, we have that [[REC]]ρ = REC, that is REC is

complete. By the same token, we have also that the total recursive functions

are complete.

3.3.2 Turing machines

Turing machines are interpretation-complete. As with the recursive func-

tions, this completeness is of special importance due to the rôle of Turing

machines in the notion of effectiveness. This is elaborated on in Chapter 6.

Theorem 31. Turing machines are interpretation-complete.

40



Proof. The completeness of Turing machines follows directly from its iso-

morphism to the recursive functions. The proof of their isomorphism (The-

orem 69) is postponed to Section 4.3, as it uses some power comparison

results given in Chapter 4.

When seeking a maximal interpretation for Turing machines or for the

recursive functions, the criteria of Section 3.2.1 may be extended:

Theorem 32. An interpretation [[TM]]ρ of Turing machines via some in-

jection ρ is maximal if |Im ρ| is infinite and there is a function h ∈ [[TM]]

such that Im h = Im ρ.

Proof. By Theorem 28, [[TM]]ρ is maximal once h is a total injection, and

h−1 ↾ Im h ∈ [[TM]]↾ Im h. By running h alternately on the ordered domain

elements (i.e. first step of h on the string “0”, then the first step on the

string “1”, then the second step on “0”, etc..) we may produce a total

injective function h′ out of h, such that Im h′ = Im h. By the closure

of Turing machines to minimalization, we may also produce the required

function h′−1.

Note that the function h in the above theorem need not be total nor

injective.

3.3.3 Hypercomputational models

A computational model is generally said to be “hypercomputational” if it

computes more than Turing machines or more than the recursive functions

(see Definition 93 in Chapter 6). Due to the completeness of Turing machines

and the recursive functions, such a model may indeed be regarded as more

powerful. Power comparison is treated in detail in Chapters 4 and 5, and

the issue of effective computation over arbitrary domains is treated in detail

in Chapter 6.

Can we conclude from the interpretation-completeness of the recursive

functions that every hypercomputational model is interpretation-complete?

The answer is, in general, “no”. However, if the hypercomputational model

preserves the basic closure properties of the recursive functions, then the

answer is “yes”.

The following example is an incomplete hypercomputational model.
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Example 33. Let h be the (incomputable) halting function (using some

standard indexing of Turing machines). Define:

ρ := λn.2n

hi := λn.

{
2ih(n/2i) 2i divides n

0 otherwise

Let A be a computational model with the extensionality [[A]] := REC ∪

{hi | i ∈ N
+}. That is, [[A]] includes all the recursive functions and all

functions hi for i ≥ 1.

We have that [[A]]ρ = REC ∪ {hi | i ∈ N} ) [[A]].

Yet, the completeness proof of the recursive functions (Theorem 30)

may be extended to hypercomputational models, as long as they have the

relevant closure properties. This also means that they are defined over

denumerable domains, as with higher cardinalities there is no meaning to

primitive recursion or minimalization:

Theorem 34. Let A be a computational model over N computing all the

recursive function and closed under functional composition, primitive recur-

sion and minimalization. Then A is interpretation-complete.

Proof. Since A is closed under minimalization, it follows that it is also closed

under the inverse of total injective functions. Hence, the proofs of Theo-

rems 29 and 30 apply as is to A.

A special case of such an interpretation-complete hypercomputational

model is an oracle Turing machine.

Corollary 35. An oracle Turing machine is interpretation-complete.

Proof. The mechanism of Turing machines ensures the closure properties

required in Theorem 34.

3.3.4 Counter machines

The model of two counter machines is very interesting. It is a standard

model in the literature, though it is incomplete. It is strictly contained in

the recursive functions, and has a maximal interpretation of all the recursive

functions. in what follows, we take a deeper look into counter machines,

checking n-counter machines, for every n.

When looking at the extensionality of counter machines we refer here

only to total functions. Accordingly, when checking its interpretations and

completeness we also refer only to total functions.
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It turns out that the model of one-counter machines is complete, two-

counter machines are incomplete, and three-or more-counter machines are

complete.

We start by defining the mechanism of counter machines, and then look

at the extensionality and completeness of n-counter machines for every n.

The mechanism of counter machines. An n-counter ma-

chine operates by a finite program with the following commands:
Ai+ increment the ith counter by 1.

Ai- decrement the ith counter by 1 unless already zero.

jump #l unconditionally jump to line no. l.

If Ai=0 jump #l if the ith counter is zero jump to line no. l.

halt end the run.
The machine performs the commands line by line, unless jumping due to a

jump command.

An n-counter machine is considered to compute a function of any arity

up to n−1, starting with the input in the first n−1 counters, and providing

the output, if it halts, in the last counter. A one-counter machine computes

unary functions, having the input and output in its unique counter.

Example 36. The following 2-counter machine computes the function

λx.2x+ 1. We denote the counters by A and B.

1. If A=0 jump #6

2. A-

3. B+

4. B+

5. jump #1

6. B+

7. halt

Three-or more-counter machines. It is known that three-counter ma-

chines are Turing-complete (e.g. [31]), meaning that their extensionality

is the set of recursive functions of the relevant arity. Hence, by the

interpretation-completeness of the recursive functions (Theorem 30), we

have that three-counter machines are interpretation-complete. Obviously

n-counter machines, where n > 3, are also complete, as they have the same

extensionality as three-counter machines (up to the relevant arity).

Two-counter machines. It was shown independently by Janis Barzdins

[2], Rich Schroeppel [39], and Frances Yao (see [39]) that two-counter ma-
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chines cannot compute the function λx.2x. On the other hand, since two-

counter machines can compute all the recursive functions via an injective

representation (viz. n 7→ 2n; see, for example, [31]), it follows that two-

counter machines are interpretation-incomplete.

One-counter machines. We show that one-counter machines (1CM) are

interpretation-complete, by the following steps:

1. A function is 1CM-computable iff it is either of the following (Theo-

rem 38):

• “Ultimately an adder”. That is, there is a threshold t and a

constant addend a, such that for every n > t, f(n) = n+ a.

• “Ultimately periodic”. That is, there is a threshold t and a con-

stant period p, such that for every n > t, f(n) = f(n+ p). (Note

that the “result” of f(n) and f(n+ p) may be a divergence.)

2. An injection ρ, such that [[1CM]]ρ ⊇ [[1CM]] is “ultimately a multiplier”

(Lemma 39). That is, there is a threshold t and a constant multiplier

m, such that for every n > t and natural number c, ρ(n+ c) = ρ(n) +

m× c.

3. For every function f ∈ 1CM and injection ρ as above, we have that if

[[f ]]ρ exists then it is 1CM-computable (Theorem 40).

Definition 37 (Ultimately Basic Functions).

• A function is ultimately an adder if there is a threshold t ∈ N and a

constant addend a ∈ Z, such that for every n > t, f(n) = n+ a.

• A function is ultimately periodic if there is a threshold t ∈ N and a

constant period p ∈ N
+, such that for every n > t, f(n) = f(n + p).

(Note that since the functions may be partial, the “value” of f(n) and

f(n+ p) may be a divergence.)

• A function is ultimately a multiplier if there is a threshold t ∈ N and

a constant multiplier m ∈ N
+, such that for every n > t and constant

k ∈ N, f(n+ k) = f(n) +m× k.

Note: A function that is ultimately an adder is also ultimately a multi-

plier with the multiplier m = 1.

Theorem 38 ([39]). A function is 1CM-computable iff it is ultimately an

adder or ultimately periodic.
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The theorem and its proof, with minor variations, are given in [39]. See

the next section (Section 3.3.4.1) for a sketch of the proof.

Notes:

• A 1CM program with a threshold t may produce any output for an

input smaller than t, including divergence.

• An ultimately periodic function has finitely many output values, pos-

sibly including divergence.

Lemma 39. An injection ρ, such that [[1CM]]ρ ⊇ [[1CM]], is ultimately a

multiplier.

Proof. Assume an injection ρ, such that [[1CM]]ρ ⊇ [[1CM]]. There is, by the

assumption, a function s′ ∈ [[1CM]], such that [[s′]]ρ = s, where s ∈ [[1CM]]

is the successor function. Accordingly, s′◦ρ = ρ◦s. Since the image of ρ◦s

is an infinite set, it follows that so should be the image of s′. Hence, s′

is not ultimately periodic, which makes it, by Theorem 38, ultimately an

adder. Let t1 ∈ N be the threshold of s′, and a ∈ Z its addend. Since ρ

is injective, it follows that there is a threshold t ∈ N, such that for every

n > t, ρ(n) > t1. Hence, for every n > t, s′◦ρ(n) = ρ(n) + a. Evaluating

the equation ρ◦s = s′◦ρ, we get that for every n > t, ρ(n + 1) = ρ(n) + a.

Now, let ρ(t) = c, for some constant c ∈ N, then ρ(t + 1) = c + a, and by

induction ρ(t + k) = c + a × k. Since ρ is injective, it also follows that the

multiplier (the addend a of s′) must be positive.

Theorem 40. 1CM are interpretation-complete.

Proof. We will show that for every injection ρ such that [[1CM]]ρ ⊇ [[1CM]],

we have that for every f ∈ [[1CM]], if [[f ]]ρ is total then [[f ]]ρ ∈ 1CM, which

makes 1CM complete. By Lemma 39, such ρ must be ultimately a multiplier

(with a threshold t1 ∈ N and a multiplier m ∈ N
+), and by Theorem 38, we

should consider two cases for the function f :

Case i: The function f is ultimately an adder with a threshold t2 and an

addend a. Assume that [[f ]]ρ is total. That is, there is a function

f̃ = [[f ]]ρ, such that for every n ∈ N, ρ◦f̃(n) = f◦ρ(n). Since ρ

is injective, it follows that there is a threshold t > max(t1, t2), such

that for every n > t, ρ(n) > t2. Hence, for every n > t, f◦ρ(n) =

ρ(n) + a = ρ(t) + m × (n − t) + a. Since f◦ρ is injective, it follows

that so is ρ◦f̃ . Thus, choosing t to be big enough, we have that for

all n > t, ρ◦f̃(n) = ρ(t) + m × (f̃(n) − t). Evaluating the equation

ρ◦f̃ = f◦ρ, we get that for all n > t, ρ(t) + m × (f̃(n) − t) = ρ(t) +
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m × (n − t) + a. Removing ρ(t) from both sides provides that for all

n > t, m × (f̃(n) − t) = m × (n − t) + a. As the left side divides

by m so should the right side, making a = m × a′ for some constant

a′ ∈ N. Hence, for all n > t, f̃(n) − t = n− t+ a′. Thus for all n > t,

f̃(n) = n+ a′, which makes f̃ ultimately an adder. By Theorem 38 it

follows that f̃ is 1CM computable.

Case ii: The function f is ultimately periodic with threshold t2 and period

p. Assume that [[f ]]ρ is total. That is, there is a function f̃ = [[f ]]ρ, such

that for every n ∈ N, ρ◦f̃(n) = f◦ρ(n). Since ρ is injective, it follows

that there is a threshold t > max(t1, t2), such that for every n > t,

ρ(n) > t2. Hence, for every n > t, ρ(f̃(n + p)) = by the assumption

= f(ρ(n+p)) = f(ρ(n)+m×p) = since f is ultimately periodic with a

period p = f(ρ(n)) = ρ(f̃(n)). We’ve got that ρ(f̃(n+ p)) = ρ(f̃(n)),

and since ρ is injective, it follows that f̃(n + p) = f̃(n). Hence, f̃ is

ultimately periodic (with a period p), and by Theorem 38 it is 1CM-

computable.

3.3.4.1 The extensionality of one-counter machines

In [39] Rich Schroeppel provides a deep analysis of two-counter machines,

some of which is relevant also to n-counter machines. In what follows, we

give a sketch proof of Theorem 38, based on Schroeppel’s analysis, providing

the extensionality of one-counter machines.

Strong loops. These are the loops that remain in the program when

ignoring the conditional (If . . .) jumps. In Example 36, there is a strong

loop by lines 1,2,3,4,5.

Observations.

1. There may be a single strong loop, if at all, that is reached from the

beginning of the program without conditional jumps.

2. After a conditional jump, the output of the program is determined

only by the current line number, regardless of the original input to the

program. This is because there is only one counter, and the condi-

tional jump is performed when the counter value is 0. Accordingly, a

conditional jump may be evaluated to its result – either a divergence

or a constant output k.
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The two possible functions. In what follows we show that a one-counter

machine without strong loops is ultimately an adder, while having a strong

loop makes it ultimately periodic.

A program without strong loops. A program has finite many instruc-

tions, so getting a big enough number it will make no conditional jumps

without the aid of strong loops. Hence, a program without strong loops

behaves the same for all numbers bigger than a threshold t, adding or sub-

tracting a constant, depending on the total number of A+ and A- commands

in the program. This is ultimately an adder by Definition 37.

A program with strong loops. Such a program will enter its strong

loop for every big enough input. It will either diverge in the loop forever,

or will get outside of it by a conditional jump. As a conditional jump is

evaluated regardless of the original input, we get the periodic behavior.

Finding the values of the threshold and the multiplier. It should

be noted that within a strong loop we may assume that all the conditional

jumps and the A- commands precede all the A+ commands. This is because

we may perform the following changes within the strong loop:

A+ = If A=0 --> A+ ...

If A=0 --> ... A+

A+ = nothing (delete both lines)

A-

The deletion of a sequence of an A+ followed by an A- might only influence the

result of a conditional jump that eventually jumps to the second command,

but we assume that all conditional jumps are already evaluated.

A one-counter machine program takes the following form:
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... Some code without a strong loop

� A-

If A=0 −→
... A- and If commands

� A-

strong If A=0 −→

loop • The threshold point

A+
... A+ commands

x A+

Every big enough number will make it to the threshold point. Denote by

threshold the number of A- commands until the threshold point, and denote

by D the number of A+ commands in the strong loop minus the number of

A- commands in it. If D ≥ 0 the run will diverge. Otherwise, the output

depends only on (input− threshold) mod (−D).

The other direction of Theorem 38. It is simple to see that every func-

tion that is ultimately periodic or ultimately an adder may be implemented

by a one-counter machine. The reason is that up to a constant threshold

the program may implement a “full output table”, giving whatever required

output to any input. This is illustrated by the following program with a

threshold of 2.

If A=0 jump #l // input was zero, jump to the required output.

A-

If A=0 jump #m // input was one, -”-.

A-

If A=0 jump #n // input was two, -”-.

A+

A+ // original input, if was bigger than 2, is restored

... // continue with an adder or periodic behavior

3.3.5 Constant functions

For getting some understanding and examples of isomorphism,

interpretation-stability and interpretation-completeness, we analyze

all possible sets of constant functions over some infinite domain. Constant

functions are also interesting in the sense that they are somewhere in the

middle between ordinary sets of elements and sets of (arbitrary) functions.
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We summarize the results by the following table, in which every entry

represents an isomorphism class. That is, all sets described by the same

table-line are isomorphic. The table is followed by the necessary proofs.

Generally, two sets of constant functions are isomorphic iff they are of the

same cardinality and so are the sets of the constant functions that they are

missing (Theorem 41, below).

Isomorphism Class

of Sets of Constant Functions Properties Proof

n(∈ N) functions Complete models Proposition 27

An infinite set of cardinality κ,

lacking an infinite set (of constant Unstable Corollary 42

functions) of cardinality η

All functions, except for n(∈ N
+) Stable Theorem 44

functions but incomplete Theorem 45

All constant functions Complete Proposition 43

Theorem 41. Two sets of constant functions, A and B, are isomorphic iff

they are of the same cardinality, and the sets of the constant functions that

they are missing are of the same cardinality.

Proof. Since A and B are sets of constant functions, it follows that they are

isomorphic iff there is a bijection π : dom A→ dom B, such that π(Im A) =

Im B. By the assumptions thatA andB are of the same cardinality, and that

the functions that they are missing are of the same cardinality, we can define

the bijections π1 : Im A → Im B and π2 : dom A \ Im A → dom B \ Im B.

Hence, the required bijection π can be defined as the union of π1 and π2.

Corollary 42. An infinite set of constant functions, lacking infinite many

constant functions, is interpretation-unstable.

Proposition 43. The set of all constant functions over some domain is

interpretation-complete.

Proof. An interpretation of a constant function is always a constant func-

tion.

Theorem 44. The set of all constant functions over some domain, except

for finite-many functions, is interpretation-stable.

Proof. The proof is by induction on the number of missing functions. For

the base case, let M be the set of all constant functions over some domain

D, let c ∈ D be some element of D, and let fc ∈ M be the constant
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function whose value is c. Assume, by contradiction, that there is a bijection

π : D → D, such that π(M \ {fc}) = M . By the assumption, M \ {fc} and

M are isomorphic, therefore, by Corollary 26, M \ {fc} is stable iff M is

stable. Hence, by Proposition 43, M \ {fc} is stable, which contradicts

the assumption that it is isomorphic to a proper superset of itself. For the

induction step, the same argument is valid, showing the isomorphism to a

proper superset of itself, which is already known to be stable.

Theorem 45. An infinite proper subset of the set of all constant functions

over some domain is interpretation-incomplete.

Proof. Let M be the set of all constant functions over domain D, A ( M an

infinite proper subset of M , and B a subset of M , which is a proper superset

of A (A ( B ⊆M). Let ρ : Im A→ Im B be an injection from the image of

A to the image of B. Then, for every function f ∈ [[B]] there is a function

f ′ ∈ [[A]], such that for every x ∈ Im B, we have that f ′◦ρ = ρ◦f . Hence A

is incomplete.

3.4 Interpretation-completeness and time com-

plexity classes

Our handling of computational models relates only to the models’ exten-

sionality. That is, we consider the set of functions that the models compute,

regardless of their internal mechanism or the computation complexity. Nev-

ertheless, one may ask about the interpretation-completeness of any set of

functions, among which are the sets of functions that can be computed by

a certain model in a certain complexity. For example, one may wonder

whether the set of functions that are computed by Turing machines in a

polynomial time complexity (P) is interpretation-complete.

In this section we check the interpretation-completeness of three stan-

dard complexity classes – the constant, linear, and polynomial time-

complexity classes with respect to Turing machines. We show that all

three are interpretation-incomplete. Their incompleteness is quite straight-

forward, shown by choosing a representation that significantly expands the

size of the original string (in the linear and polynomial cases).

This straightforward incompleteness leads us to suggest a more adequate

property for complexity classes, denoted “semi-completeness”, which limits

the size-expansion allowed by the representations.
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Functions vs. languages. When looking for interpretation-completeness

we are interested in functions with images in the whole domain (f : Σ∗ →

Σ∗), as opposed to decision (Boolean) functions. The latter are easily shown

to be incomplete, by adding some Boolean result in the representation, e.g.

as the least significant bit. When considering the set of functions with

images in the whole domain, the simple data-hiding above does not work,

since we cannot generate the additional data for the output of the function.

All the same, for interpretation-stability, it might also be interesting to look

at decision functions.

Constant time complexity. When considering functions of constant

time complexity, the exact definition of the computational model is of sig-

nificant importance (Turing machines with one tape vs. several tapes, etc..).

In any case, this class of functions is easily shown to be incomplete. We shall

consider here Turing machines with a single tape, operating over {a, b}∗.

A function is of constant complexity if there is a Turing machine that

implements it, running no more than K steps for all inputs. Formally,

Definition 46. A function f : {a, b}∗ → {a, b}∗ is of constant time com-

plexity if there is a Turing machine T and a constant K ∈ N, such that for

every input string s ∈ {a, b}∗, T halts after no more than K steps with the

output string f(s).

We show the incompleteness of this class by choosing a representation

ρ that concatenates the result of a non-constant complexity function to the

original string, as its rightmost bit. This extra function is the parity function

with respect to the length of the input string.

Theorem 47. The set of constant time complexity functions, C, is

interpretation-incomplete.

Proof. The claim is that there is an injection ρ : {a, b}∗ → {a, b}∗, such that

[[C]]ρ ) C.

The representation ρ would be the concatenation of the letter “a” to

the string if the length of the original string is even, and concatenating the

letter “b” otherwise. Denoting concatenation by · , ρ is formally defined as

follows:

ρ(s) :=

{
s · “a” |s| is even

s · “b” otherwise

Specifically, we show that the function ρ itself, which is not of constant

time-complexity, belongs to [[C]]ρ.
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We should show three things – i) ρ 6∈ C ; ii) ρ ∈ [[C]]ρ and iii) for every

f ∈ C there is f ′ ∈ C, s.t. f ′◦ρ(s) = ρ◦f(s) for every s ∈ {a, b}∗.

i) The function ρ is not of constant time complexity as it should go over

the whole input string, making it an O(n) function.

ii) The function ρ is easily implemented in constant time over a string of

the form ρ(s): if the last bit of ρ(s) is “a” then ρ(ρ(s)) := ρ(s)·“b”,

otherwise ρ(ρ(s)) := ρ(s)· “a”.

iii) Let f be implemented by a Turing machine T with time complexity

K. We can conduct a constant-complexity machine T ′, such that T ′

will make the following steps: 1. check the last bit (the parity of the

original string’s length) and remove it; 2. perform the operation of T

over the original string; and 3. add the appropriate last bit (the parity

of the new string’s length), depending on whether the operations of T

added or deleted an even or an odd number of bits. For having the

above parity information, the machine T ′ should have two copies of T ,

“jumping” between the copies once a bit is added to or deleted from

the tape.

Linear time complexity. This class is also interpretation incomplete.

This is shown by using a representation that significantly enlarges the orig-

inal string.

Theorem 48. The class of linear time complexity functions, L, is

interpretation-incomplete.

Proof. The claim is that there is an injection ρ : {a, b}∗ → {a, b}∗, such that

[[L]]ρ ) L.

The representation ρ would duplicate the original string, s, |s| times

(See Figure 3.4). It cannot be a straightforward duplication, but should add

some separation between the duplications. See Note 49 below for a technical

implementation in linear time.

We should show two things – i) there is a function g, such that g ∈ [[L]]ρ
and g 6∈ L; and ii) L ⊆ [[L]]ρ.

i) Let g be an O(n2) time complexity function that has an output of

linear size in the size of the input. Now, over the large string, ρ(s),

we can apply a function g′ ∈ L that activates g on the first copy of s
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g 6∈ L

-

g′ ∈ L

ρ squares the string’s length.
g′ is polynomial w.r.t. s,

but linear w.r.t. ρ(s)

Figure 3.4: The class of linear time complexity functions is interpretation-

incomplete

within ρ(s). The time complexity of g′ is linear relative to ρ(s). For

getting the required output, ρ◦g, we still have to duplicate the output

string, g(s), |g(s)| times. Since the output growth of g is limited by a

constant k (that is, |g(s)| < k|s|), it follows that the duplication of g(s)

takes |g(s)|2 < (k|s|)2 = k2|s|2 steps, which is linear in |ρ(s)| = |s|2.

Hence, g = ρ−1◦ρ◦g◦ρ−1◦ρ = ρ−1g′◦ρ, getting that g ∈ [[L]]ρ.

ii) Since every function of linear time complexity can only linearly enlarge

the output, it follows from the arguments of the previous step that

L ⊆ [[L]]ρ.

Note 49. The duplication, given in the above proof, cannot be a straight-

forward one, but should add some separation between the duplications. This

may easily be done in linear time. For instance, with the {a, b} alphabet

we may repeat each character twice, and mark the separations by “ab”. For

example, the string abb would be represented by aabbbbabaabbbbabaabbbb.

Polynomial time complexity. Somewhat surprisingly, this class is also

interpretation-incomplete. We show it using the same approach as used for

the linear time complexity case, just that here the representation ρ dupli-

cates the original string |s|log|s| times.

Theorem 50. The class of polynomial time complexity functions, P, is

interpretation-incomplete.

Proof. The claim is that there is an injection ρ : {a, b}∗ → {a, b}∗, such that

[[P]]ρ ) P.

The representation ρ would duplicate the original string, s, |s|log |s| times

(the technical implementation is analogous to the linear case, described in

Note 49).

We should show two things – i) there is a function g, such that g ∈ [[P]]ρ
and g 6∈ P; and ii) P ⊆ [[P]]ρ.
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i) Let g be an O(nlogn) time complexity function that has an output of

polynomial size in the size of the input. Now, over the large string,

ρ(s), we can apply a function g′ ∈ P that activates g on the first

copy of s within ρ(s). The time complexity of g′ is polynomial rel-

ative to ρ(s). For getting the required output, ρ◦g, we still have to

duplicate the output string, g(s), |g(s)|log |g(s)| times. Since the out-

put growth of g is limited by a power of k (that is, |g(s)| < |s|k) the

duplication of g(s) takes |g(s)|log |g(s)| < (|s|k)(log |s|k) = |s|(k×log |s|k) =

|s|(k×k×log |s|) = (|s|log |s|)k
2
, which is polynomial in |ρ(s)| = |s|log |s|.

Hence, g = ρ−1◦ρ◦g◦ρ−1◦ρ = ρ−1g′◦ρ, getting that g ∈ [[L]]ρ.

ii) Since every function of polynomial time complexity can only polynomi-

ally enlarge the output, it follows from the arguments of the previous

step that P ⊆ [[P]]ρ.

Note: Could one use in the above proof a representation ρ that dupli-

cates the original string, s, 2|s| times? The answer is NO, since the sim-

ulating functions would need to exceed polynomial data growth: Let f(s)

be the polynomial function that given a string s duplicates it |s| times.

The simulating function f ′ should duplicate the original output f(s) by

the exponent of its length. That is 2|f(s)| = 2|s|×|s| times. However, if

f ′ is polynomial with a power of k, then the output length should be less

than a power k of the input’s length. That is, |f ′(ρ(s))| < |ρ(s)|k. But,

|f ′(ρ(s))| = 2|s|×|s| > 2k×|s| = (2|s|)k = |ρ(s)|k.

Semi-completeness. The straightforward incompleteness of the com-

plexity classes suggests that some other completeness definitions should be

considered when handling complexity classes. A possibly natural definition

is to limit the data growth of the representation to be the same as that of the

complexity class. For example, limiting the data growth to be polynomial

when considering the class of polynomial time complexity functions. Note

that this limitation applies only to the data growth and not to the computa-

tion time (furthermore, the representation need not be Turing-computable).

Definition 51 (Semi-Completeness). A class of functions with time com-

plexity T is semi-interpretation-complete if it is interpretation-complete with

respect to representations that have a data growth bounded by T .

The class of constant time complexity functions can be shown to be

interpretation-unstable, thus it is also not semi-complete. As for the linear

and polynomial time complexity classes, we currently do not have an answer.
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Chapter 4

Comparing Computational

Power

It is standard in the literature to compare the power of computational mod-

els. However, neglecting the possibility of interpretation-incomplete models,

it is common to say that model B is strictly stronger than model A when it

computes strictly more functions. This might allow one to show that some

computational models are strictly stronger than themselves (see Chapter 2)!

We define a comparison notion over arbitrary domains based on model

interpretations. With this notion, model B is strictly stronger than A if B

has an interpretation that contains A, whereas A cannot contain B under

any interpretation.

We start, in Section 4.1, by providing the mathematical definition of the

comparison notion. We give a basic definition, allowing all interpretations,

and two additional definitions with some restrictions on the allowed inter-

pretations. In Sections 4.1.1 and 4.1.2 we extend the notion from “regular”

deterministic models to some other types of computational models.

In Section 4.2 we provide several results with respect to power compar-

ison, isomorphism and completeness. In Section 4.3 we use the compari-

son notion to compare between some standard models, as Turing machines,

stack machines, etc.. We conclude the chapter, in Section 4.4, by providing

a definition of the comparison notion in the terminology of category theory.

In the next chapter, Chapter 5, we provide some philosophical justifica-

tions for the comparison notion.
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4.1 The comparison notions

Since we are only interested here in the extensional quality of a compu-

tational model (the set of functions or relations that it computes), not

complexity-based comparison or step-by-step simulation, we use model in-

terpretations as the basis for comparison.

We generally say that model B is at least as powerful as model A if it

can compute whatever A can. When both models operate over the same

domain it simply means containment: B is at least as powerful as A if

[[B]] ⊇ [[A]]. However, when the models operate over different domains we

ought to interpret one model over the domain of the other. Hence, the

general comparison notion would say that B is at least as powerful as A if

it has an interpretation that contains A.

As one textbook states [44, p. 30]:

Computability relative to a coding is the basic concept in com-

paring the power of computation models.. . . The computational

power of the model is represented by the extension of the set

of all functions computable according to the model. Thus, we

can compare the power of computation models using the concept

‘incorporation relative to some suitable coding’.

We provide three notions of comparison, depending on the allowed rep-

resentations. The basic, most permissive, comparison notion allows any

injection, while the firmest notion allows only bijections. In between, we

define a notion that allows injections for which the “at least as powerful”

model can fix their image.

In this chapter we handle the mathematical aspects of the comparison

notions, while in Chapter 5 we provide some philosophical justifications for

them.

Definition 52 (Power Comparison).

• Model B is at least as powerful as model A, denoted B & A, if it has

an interpretation that contains the extensionality of A. That is, B & A

iff exists an injection ρ : dom A→ dom B, such that [[B]]ρ ⊇ [[A]].

• Model B is decently at least as powerful as model A, denoted B % A,

if it has an interpretation that contains the extensionality of A via a

representation for which it can fix its image. That is, B % A iff exists

an injection ρ : dom A→ dom B, such that [[B]]ρ ⊇ [[A]] and there is a

total function g ∈ [[B]] for which Im g = Im ρ and such that for every

y ∈ Im ρ we have that g(y) = y.
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• Model B is bijectively at least as powerful as model A, denoted B ' A,

if it has a bijective interpretation that contains the extensionality of

A. That is, B ' A iff exists a bijection π : dom A → dom B, such

that [[B]]π ⊇ [[A]].

Proposition 53. The computational power relations &,%,' are quasi-

orders.

Transitivity of the relations follows from the fact that the composition

of injections is an injection.

Obviously, the two latter comparison notions imply the former one. For

the third notion to imply the second one, it is sufficient that the at least

as powerful model has some surjective function, even the identity function.

Additionally, when assuming a little more about the representation and the

model, the second notion also implies the third one (see Theorem 28).

Note 54. When comparing the computational power of models, it should be

noted that one function cannot be “better” than another; only a model can be

better than another. There is only an equivalence relation between functions,

where two partial functions, f and g, over the same domain D are deemed

equal, denoted f = g, if they are defined for exactly the same elements of

the domain (f(x) diverges iff g(x) diverges for all x ∈ D) and have the same

value whenever they are defined (f(x) = g(x), for all x ∈ D). For example,

a total function f is not better than nor equal to a partial function g that

has the same values as f when it converges. This is clearly demonstrated by

taking g to be a “halting function”, which returns 1 when the input encodes

a halting machine and diverges otherwise.

Our comparison notions go along with some standard approaches, for

instance in [17, p. 24], [38, p. 27] and [44, p. 30]. The latter uses the term

“incorporate” for our notion of “at least as powerful”:

1. F (SAL(X1)) is incorporated in F (SAL(X2)) relative to

coding c, if for every function f in F (SAL(X1)) there is

a function g in F (SAL(X2)) which incorporates f relative

to c.

2. The computation models SAL(X1) and SAL(X2) are equiv-

alent if there exist codings c1 and c2 such that

(a) F (SAL(X1)) incorporates F (SAL(X2)) via coding c1

(b) F (SAL(X2)) incorporates F (SAL(X1)) via coding c2
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where F (SAL(Xi)) denotes the set of functions computed by SAL(Xi) [44,

p. 27].

Our decent-comparison notion follows Rice’s [37, p. 298] and Rabin’s

definition of a computable group [35, p. 343]: “DEFINITION 3. An indexing

of a set S is a one to one mapping i : S → I such that i(S) is a recursive

subset of I.”

Example 55. Turing machines are at least as powerful as the recursive

functions via a unary representation of the natural numbers. See, for exam-

ple, [25, p. 147]. Indeed, it is so by all three notions (see Theorem 69).

Ben-Amram [3, p. 127] suggests a comparison notion resembling our

notion, however he requires the representation to be intuitively natural.

One may wonder why we do not require the representation to be Turing-

computable. A detailed answer to that is given in Chapters 5 and 6. The

main points are:

• When comparing models in the scope of defining effectiveness, the

requirement of a Turing-computable representation leads to a circular

definition.

• One may wish to compare sub-recursive models or hypercomputational

models, for which Turing-computability is not necessarily the proper

constraint.

Power equivalence. The power equivalence relation between models fol-

lows directly from the power comparison notion. Models A and B are of

equivalent power if A & B and B & A. Below is the definition for the three

comparison notions:

Definition 56 (Power Equivalence).

• Models A and B are power equivalent, denoted A ∼ B, if A & B and

B & A.

• Models A and B are decently power equivalent, denoted A ≃ B, if

A % B and B % A.

• Models A and B are bijectively power equivalent, denoted A ≈ B, if

A ' B and B ' A.

Example 57. The (untyped) λ-calculus is power equivalent to the recursive

functions, via Church numerals, on the one hand, and via Gödelization, on
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the other. However, it is not interpretation-complete, as it cannot even com-

pute the identity function over an arbitrary lambda-term. Hence, it is not

bijectively-power equivalent to the recursive functions (otherwise contradict-

ing the completeness of the recursive functions).

Strictly stronger. We generally think of model B as strictly stronger

than model A if it can compute more. However, because of the sensitivity

of models to the domain interpretation, proper containment does not imply

more computational power. That is, [[B]] ) [[A]] 6⇒ B � A. This is so for all

three comparison notions above. A detailed handling of the sensitivity issue

is given in Chapter 2.

The proper definition of model B being strictly stronger than model A

is that B & A while A 6& B.

Definition 58 (Strictly Stronger).

• Model B is stronger than model A, denoted B � A, if B & A while

A 6& B.

• Model B is decently stronger than model A, denoted B � A, if B % A

while A 6% B.

• Model B is bijectively stronger than model A, denoted B ≩ A, if B '

A while A 6' B.

Note that for model B to be stronger than model A there should be no

injection ρ via which A &ρ B. In contradistinction to the “as powerful”

case, some model B may be bijectively stronger than a model A, but not

stronger than A. However, if A is interpretation-complete, we do have that

B ≩ A implies B � A (Theorem 67).

Example 59. Real recursive functions [33], operating over R
2, are decently

stronger than Turing machines. The comparison is done via an injective

representation ψ : {0, 1}∗ → R
2, defined by [[x]]ψ := (0, [[x]]ρ), where [[x]]ρ

is the standard binary interpretation over the natural numbers [33, p. 849].

Since the model computes the floor function (λx. ⌊x⌋) [33, p. 843], it follows

that it also has a function which fixes the representation image. On the other

hand, the real recursive functions are obviously not bijectively stronger than

the recursive functions, as their domain is of a higher cardinality.
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4.1.1 Non-deterministic models

The extension of most of the definitions and theorems given so far (in this

chapter and the previous ones) to non-deterministic models is quite straight-

forward. There are, however, some specific issues concerning the power

comparison of non-deterministic models, which will be discussed below.

We begin by defining what we mean by a non-deterministic computa-

tional model and its extensionality:

Definition 60 (Non-deterministic Computational Model). A non-

deterministic computational model A over domain D is any object asso-

ciated with a set of (non-unary) relations over D ∪ ⊥. This set of relations

is called the extensionality of the non-deterministic computational model,

denoted [[A]].

Note that we use the special symbol ⊥ in the above definition for denot-

ing a non-halting computation, while we did not need it in the definition of

a deterministic model (Definition 1). The reason is that a non-deterministic

computation might sometimes diverge on a domain element e and sometimes

converge to some value v. In such a case, the value of the computation will

be both ⊥ and v, denoted by 〈e,⊥〉, 〈e, v〉 in the (multivalued) function’s

description. On the other hand, the divergence of a deterministic function

on a domain element e, may be simply denoted by not having a tuple with

e in the function’s description.

As a result of using ⊥ to denote divergence, we may assume that all

functions have at least one value for every domain element.

When investigating the influence of the domain interpretation, we are

concerned with the containment relation between the different interpreta-

tions of a computational model. Hence, the definitions given in this chapter

and the previous ones apply to both deterministic and non-deterministic

models, as in both types of models the interpretations are sets of relations.

When we compare the power of computational models, two functions

are considered equal if and only if they are described by the same relation,

while a model is as powerful as another if it contains all the functions of the

former (see Note 54). This is also the case when we compare between non-

deterministic models. There might be cases in which a different approach

is required, assuming a different equality notion between functions. For

example, two non-deterministic functions might be considered equal if they

may always produce the same value. That is, a function that either diverges

or converges with the value v is considered equal to a function that always

converges with the value v. In such cases, the comparison notions should be

adjusted to take into account the special equality notion between functions.
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By this comparison approach, a non-deterministic model B may be as

powerful as a deterministic model A (if it deterministically computes all the

functions of A, in addition to its non-deterministic computations), while

the opposite is impossible (when B actually has some non-deterministic

computations).

4.1.2 Universal machines and interactive machines

We extend the comparison notions above to universal machines and inter-

active machines.

Universal machines. Computation is often performed via universal ma-

chines, also referred to as “interpreters”. That is, a single machine (or

computer program) gets as input both the machine to interpret and the lat-

ter’s input. One may wonder how to compare the computational power of

universal machines. From our point of view, computational power is exten-

sionality, meaning the set of computed functions. Hence, when comparing

universal machines we compare the sets of functions that they interpret.

Accordingly, it is exactly like comparing computational models.

Interactive machines. An interactive machine interacts with the envi-

ronment. It is often considered to run forever, getting an input stream

and producing an output stream. A common example for such a ma-

chine/program is the modern operating system. More details on interactive

machines can be found, for example, in [5, 23].

How should one compare the power of computational models with inter-

active machines? Since we consider computational power to be extension-

ality, we should define what is the extensionality of such models. Once we

agree on their extensionality (e.g. as a set of interactive functions, which are

sets of streams), we can interpret them over different domains as we do with

ordinary models (see Definition 4). The basic comparison notion as well

as the bijective comparison notion (Definition 52) can be applied to these

models, as they are based on model interpretation and set-containment. The

decent-comparison notion (Definition 52) needs some adaptation to the case

of interactive machines for conveying the fact that the at least as powerful

model recognizes the image of the representation.
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4.2 Power comparison, isomorphism, and com-

pleteness

The general approach for showing that model B is stronger than model A

is tedious – we should negate the possibility that A &ρ B for all injections

ρ. The situation is much simpler with interpretation-complete models, for

which proper containment does imply more power:

Theorem 61. For an interpretation-complete model A and some model B,

we have that B � A iff there exists an injection ρ such that [[B]]ρ ) [[A]].

Proof. If [[B]]ρ ) [[A]] then, by definition, B & A. From the completeness

of A it follows that A 6& B. As for the other direction, by definition there

exists an injection ρ such that [[B]]ρ ⊇ [[A]] for some ρ. Were [[B]]ρ ⊇ [[A]], it

would make A ∼ B, contradicting the assumption.

We continue below with some lemmata and theorems on the relations

between the power comparison notions, isomorphism, stability and com-

pleteness.

Isomorphism and bijective power equivalence. These two notions

are very similar, though not the same. However, when sticking to

interpretation-stable models they do coincide. We summarize their relations

in the following theorem.

Theorem 62.

1. Isomorphism implies bijective power equivalence.

2. Bijective power equivalence does not imply isomorphism.

3. For interpretation-stable models, bijective power equivalence implies

isomorphism. That is, if a model A is interpretation-stable, then for

every model B, B is isomorphic to A if and only if it is bijectively

power equivalent to A.

Proof.

1. Obvious from the definitions (Definitions 7 and 56).

2. We will prove that bijective power equivalence does not imply iso-

morphism, by using some variants of the triangular machine model

(described in Section 2.2). Looking at Figure 2.4, we have that the

extensionality of triangular machines is [[Tr]] = fi,j (i, j ∈ N), where
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fi,j(s) changes the input string s into the ith string in the jth sub-

sequent row to s’s row, wrapping around for overly large i. Define

two submodels, A and B, of triangular machines, having the following

extensionality: [[A]] := {fi,j | i ≥ 1 and j ≥ 0} and [[B]] := [[A]]∪{f0,0}.

That is, A lacks all the functions of [[Tr]] that changes the input string

into the first (0th) string of some row, while B adds to A only the

function that changes the input string into the first string of the same

row. (B still lacks all the functions that change the input string into

the first string of a different row.) We will show that A and B are bi-

jectively power equivalent, but not isomorphic. Obviously, B ' A, as

[[B]] ⊇ [[A]]. We also have that A ' B via the bijection τ , defined in the

end of Section 2.2, since [[A]]τ = [[Tr]]. On the other hand, it turns out

that if some interpretation [[A]]π of A via a bijection π contains [[B]],

then it must strictly contain it (actually, it implies that [[A]]π = [[Tr]]).

We show it in two steps:

i: Assume that [[A]]π ⊇ [[B]] via a bijection π, such that π moves

some string e from its original row. By assumption, there is

a function fp,q ∈ [[A]] such that [[fp,q]]π = f0,0. Since no two

rows are of the same length, it follows that either eth row is

shorter than the row of π(e), or the other way around. In the

first case, there is a string d in a row different than eth row, such

that π(d) is in the same row as π(e). This leads to a contradic-

tion, as f0,0(d) 6= f0,0(e) (since they are on different rows), while

[[fp,q]]π(d) = π−1◦fp,q◦π(d) = π−1◦fp,q◦π(e) = [[fp,q]]π(e). Analo-

gously, the second case, in which eth row is longer than the row

of π(e), leads to a contradiction.

ii: By the previous step, if [[A]]π ⊇ [[B]] via a bijection π, then π must

leave every string in its original row. Thus, there is a function

fp,0 ∈ [[A]] such that [[fp,0]]π = f0,0. Since π−1◦fp,0◦π = f0,0 and

π does not move strings between rows, it follows that π−1◦fp,0 =

f0,0. Hence, π moves the 0th string of each row to the pth string

of the same row. Accordingly, π−1◦fp,i◦π = f0,i for every i ∈ N.

Thus, [[A]]π = [[Tr]], which strictly contains [[B]].

3. Let A be a stable model and assume A 'π B 'τ A for model B and

bijections π, τ . By definition, [[A]]π ⊇ [[B]] and [[B]]τ ⊇ [[A]]. Were

[[A]]π ) [[B]], then, by Lemma 17, [[[[A]]π]]τ ) [[B]]τ ⊇ [[A]], which would

contradict the stability of A. Thus, [[B]] = [[A]]π, which makes it A and

B isomorphic.
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Isomorphism preserves stability and completeness (Corollary 26). This

is also the case, by the above theorem, with bijective power equivalence.

Corollary 63. Bijective power equivalence preserves interpretation-stability

and interpretation-completeness. That is, let A and B be bijectively

power equivalent models, then A is interpretation-stable iff B is, and A is

interpretation-complete iff B is.

The formulation of the previous theorem can be strengthened for com-

plete models:

Lemma 64. If model A is interpretation-complete and A & B ' A for some

model B, then A and B are isomorphic.

Proof. Suppose A is complete, and A &ρ B 'π A, for model B, injection

ρ and bijection π. It follows that [[B]]π = [[A′]] ⊇ [[A]] for some model A′.

Thus, A &ρ B 'π A′ ⊇ [[A]]. Therefore, from the completeness of A, it

follows that [[A′]] = [[A]]. Hence, A ≈ B, and by the previous theorem, A

and B are isomorphic

Next, we provide some means to show that a model is stronger than

another.

Strictly stronger. Interpretation-completeness also helps with showing

that some model is strictly stronger than another.

Theorem 65. If A / B and [[B]] ( [[C]], for models A, B, and C, then

there is a model D, such that C ∼= D and [[D]] ) [[A]].

Proof. Suppose A /π B for bijection π. Then, π([[A]]) ⊆ [[B]] ( [[C]]. Let

D be a model with the extensionality [[D]] = π−1([[C]]), from which we

have that C ∼= D. Since π([[A]]) ( [[C]], it follows from Lemma 17 that

[[A]] = π−1(π([[A]])) ( π−1([[C]]) = [[D]].

Theorem 66. If model A is interpretation-complete, A ≈ B and [[B]] ( [[C]],

for models B and C, then C � A.

Proof. If A ≈ B and [[B]] ( [[C]], then C & B & A. By Corr. 63, we have

that B. Thus, B 6& C and also A 6& C. Hence, C � A.

Theorem 67. If model A is interpretation-complete, then B ≩ A implies

B � A
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Proof. Since B ≩ A, it follows that B ' A while A 6' B. Thus, we also have

that B & A. Assume by contradiction that B 6� A. Since, B & A, it follows

that A & B. Hence, by Lemma 64, we have that A and B are isomorphic,

contradicting the assumption that B ≩ A.

4.3 Comparison of some standard models

We turn now to compare some specific computational models.

As discussed in the beginning of this chapter, the proper containment be-

tween the recursive functions and the primitive recursive functions does not

imply that the former are strictly more powerful than the latter. Nonethe-

less, we show hereby that, indeed, the recursive functions are strictly more

powerful, even by the general comparison notion, allowing all possible inter-

pretations of the primitive recursive functions.

Theorem 68. The primitive recursive functions, Prim, are strictly weaker

than the recursive functions.

Proof. Clearly, REC &ι Prim. So, assume, on the contrary, that Prim &ρ

REC for some injection ρ. Let s ∈ REC be the successor function. There is,

by assumption, a function s′ ∈ Prim such that s′◦ρ = ρ◦s. Since ρ(0)

is some constant and ρ(s(n)) = s′(ρ(n)), we have that ρ is derived by

primitive-recursion from s′ ∈ Prim, thus ρ ∈ Prim. Since ρ is a recur-

sive injection, it follows that ρ−1 is partial recursive. Define the recursive

function h(n) = ρ(mini{ρ(i) > ack(n, n)}), where ack is Ackermann’s func-

tion. Since λn.ack(n, n) grows faster than any primitive recursive function

and h(n) > ack(n, n), it follows that h /∈ Prim. Since Im h ⊆ Im ρ, it

follows that t = ρ−1◦h ∈ REC. Thus, there is a function t′ ∈ Prim, such

that t′◦ρ = ρ◦t = ρ◦ρ−1◦h = h. We have arrived at a contradiction: on the

one hand, t′◦ρ ∈ Prim, while, on the other hand, t′◦ρ = h /∈ Prim.

We do not know if the primitive recursive functions (Prim) are

interpretation-complete, Theorem 68 notwithstanding.

It is common to show that Turing machines and the recursive functions

are of equivalent computational power. We show hereby that they are ac-

tually isomorphic. We base the proof on known results, given in [26], for

example.

Adopting the approach of [26], TM, as a machine, operates over an

infinite tape of the symbols {0, 1, B}, while TM, as a computational model

(set of partial functions), operates over {0, 1}∗ [26, p. 116]:
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The tape must be represented finitely in order to define the tran-

sition rules. One way is to include all nonblank symbols, so a full

tape is obtained by appending infinitely many blanks to each end

of a finite tape representation. . . . Input and output are strings

in TM-data = {0, 1}∗, are found on the first tape, and consist of

all symbols to the right of the scanned symbol, extending up to

but not including the first blank.

Theorem 69. Turing machines (TM), over a binary alphabet, and the re-

cursive functions (REC) are isomorphic.

Proof. Since REC is complete, it is sufficient, by Lemma 64, to show

that REC & TM ' REC. Since it is well-known that REC & TM via

Gödelization, it remains to show that TM 'π REC, for some bijection π.

Define (as in [26, p. 131]) the bijection π : N → {0, 1}∗, by

π(n) =





ǫ n = 0

d s.t. 1d is the shortest binary

representation of n+ 1 otherwise

For example, π(i) is ǫ, 0, 1, 00, 01, 10, 11, 000, . . . for i = 0, 1, 2, . . ..

As per [26, pp. 131–133], TM 'π RAM (Random Access Machines);

[[RAM]] ⊇ [[CM]] (Counter Machines) by [26, pp. 116–118]; and CM &ι REC
by [26, pp. 207–208]. We have that REC & TM 'π RAM 'ι CM 'ι REC;

thus, TM ∼= REC. (The exact definitions of RAM and CM are immaterial,

as they are only intermediaries in TM 'π RAM 'ι CM 'ι REC.)

From the above proof, we also have that random access machines (RAM)

and counter machines with unlimited number of counters (CM) have exactly

the same extensionality as the recursive functions.

This is not the case with two-counter machines, as elaborated in Sec-

tion 3.3.4. They are of equivalent power to the recursive functions, however

not isomorphic to them. Indeed, they are bijectively-weaker than them

(otherwise contradicting the stability of the recursive functions).

By known results, two-stack machines have the same extensionality as

Turing machines.

Due to the closure properties of Turing machines and the recursive func-

tions, they are bijectively at least as powerful as some model A if and only

if they are decently at least as powerful as A.

Theorem 70. Let A be a computational model operating over a denumerable

domain. Then Turing machines and the recursive functions are decently at
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least as powerful as A if and only if they are bijectively at least as powerful

as A. That is, TM % A iff TM ' A iff REC % A iff REC ' A.

Proof. Follows directly from Theorem 28 and the closure properties of the

recursive functions.

4.4 Category theory and computational power

Category theory is an abstract and generic tool for analyzing mathemati-

cal areas concerning mappings between objects. Power comparison between

computational models seems to be a perfect candidate for such an area; the

comparison is done by matching functions of one model with functions of an-

other, according to a mapping between the domains over which they operate.

Hence, it looks natural to provide a categorial definition of computational

power comparison.

Indeed, it turns out that the power comparison notion (Definition 52),

as well as related properties as interpretation-completeness (Definition 22),

fit very naturally into the definitions of category theory.

We define below the computational power scheme as a category, named

CompPower. We do it in steps, each time providing the relevant category

theory definitions, followed by the corresponding definitions/properties of

the CompPower category. Our category is based on the standard Set

category of sets [1, p. 22] and goes along the lines of the standard Alg(Ω)

category of algebras [1, p. 22].

All category theory definitions are taken from [1]. They are marked by

“Cat-Definition”, and linked to their page number in [1].

Simple category. We begin with the very basic definition of a category.

Cat-Definition 1 (Category [1, p. 21]). A category is a quadruple A =

(O, hom, id, ◦) consisting of

1. A class O, whose members are called objects

2. For each pair (A,B) of objects, a set hom(A,B), whose members are

called morphisms from A to B

3. For each object, a morphism idA : A→ A, called the identity on A

4. A composition law associating with each morphisms f : A → B and

g : B → C a morphism g◦f : A→ C, called the composite of f and g

subject to the following conditions:

67



(a) composition is associative; i.e. h◦(g◦f) = (h◦g)◦f ,

(b) the identity morphisms act as identities with respect to composition;

i.e. for all morphisms f : A→ B we have that idB◦f = f and f◦idA =

f ,

(c) the sets hom(a, b) are pairwise disjoint.

Categories will be denoted by bold letters, e.g. Cat. Morphisms in a

category will be denoted by lowercase letters, with uppercase letters reserved

for objects.

We provide now the framework of computational power comparison as

the CompPower category.

Definition 71 (CompPower). The category CompPower consists of the

following:

1. Its objects are computational models (Definition 1). That is, any entity

that computes a set of functions over some domain. Each object A

has its domain, denoted dom A, and its extensionality, denoted [[A]],

which is the set of (partial) functions that the model computes over its

domain.

2. The morphisms hom(A,B) are the functions ρ : dom A → dom B,

such that [[B]]ρ ⊇ [[A]]. (See Remark 72 below, for the meaning of [[B]]ρ
for any function ρ.)

3. The identity morphism idA is defined by the identity mapping over A’s

domain i : dom A→ dom A.

4. The composition of morphisms ρ : A→ B and η : B → C is defined by

the composition of functions η◦ρ : dom A → dom C mapping between

the domains.

Note 72. Model interpretation was defined in Chapter 2 only for injective

functions between domains (Definition 4). Nevertheless, it can be analo-

gously defined for any function between domains, as used above.

Note 73. We defined above that a morphism ρ : A→ B means that [[B]]ρ ⊇

[[A]]. One may define the direction of the morphism in the other way round.

However, the former is more natural than the latter in category theory, as

shown below when discussing “fibres”.
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Note 74. There is a common usage of the term “domain” in category theory

in the context of morphisms. For a morphism f : A → B, it is said that A

is the domain of the morphism f and B is its codomain. This has nothing

to do with our usage of the term “domain” for denoting the set of elements

over which a computational model operates.

We continue with the categorial definition of an isomorphism between

objects.

Cat-Definition 2 (Isomorphism [1, pp. 28–291]).

• A morphism f : A → B in a category is called an isomorphism pro-

vided that there exists a morphism g : B → A with g◦f = idA and

f◦g = idB.

• Such a morphism g is called the inverse of f and is denoted by f−1.

• Such objects A and B are said to be isomorphic.

Proposition 75. The standard isomorphism relation between computational

models (Definition 7) coincides with the categorial definition of isomorphism,

applied to the CompPower category.

Construct. We define now the CompPower category as a “construct”,

meaning a “concrete category” over the Set category of sets. This is a

natural direction due to the close relations between computational power

comparison and mapping between sets.

We start with defining a “functor”, which is a mapping between cate-

gories. This will be required for defining one category on top of another.

Cat-Definition 3 (Functor [1, p. 29]). If A and B are categories, then

a functor F from A to B is a function that assigns to each A-object A

a B-object F (A), and to each A-morphism ρ : A → A′ a B-morphism

F (ρ) : F (A) → F (A′), in such a way that

1. F preserves composition; i.e. F (ρ◦η) = F (ρ)◦F (η) whenever ρ◦η is

defined, and

2. F preserves identity morphisms; i.e. F (idA) = idF (A) for each A-

object A.

There are a few standard properties that functors may, or may not, have:

Cat-Definition 4 (Functor properties [1, p. 34]). Let F : A → B be a

functor.
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1. F is called an embedding provided that F is injective on morphisms.

2. F is called faithful provided that all the hom-set restrictions

F : homA(A,A′) → homB(F (A), F (A′)) are injective.

3. F is called full provided that all the hom-set restrictions are surjective.

4. F is called amnestic provided that an A-isomorphism ρ is an identity

whenever F (ρ) is an identity.

We can define now a “concrete category”.

Cat-Definition 5 (Concrete category [1, p. 61]). Let X be a category.

A concrete category over X is a pair (A, U), where A is a category and

U : A → X is a faithful functor. Sometimes U is called the forgetful

(or underlying) functor of the concrete category and X is called the base

category for (A, U).

Note 76. We adopt the following notational convention [1, p. 62]:

Since faithful functors are injective on hom-sets, we usually assume that

homA(A,B) is a subset of homX(U(A), U(B)) for each pair (A,B) of A-

objects. This familiar convention allows one to express the property that

“for A-objects A and an X-morphism f : U(A) → U(B) there exists a (nec-

essarily unique) A-morphism A→ B with U(A→ B) = f : U(A) → U(B)”

much more succinctly, by stating “f : U(A) → U(B) is an A-morphism

(from A to B)”.

A concrete category over the category of sets has a special interest in

category-theory, and the dedicated name “construct”.

Cat-Definition 6 (Set [1, p. 22]). The category Set consists of

• The objects are the class of all sets

• hom(A, b) is the set of all functions from A to B

• idA is the identity function on A

• Composition of morphisms is the usual composition of functions.

Cat-Definition 7 (Construct [1, p. 61]). A concrete category over Set is

called a construct

The CompPower category may be naturally viewed as a construct:
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Proposition 77. Let U : CompPower → Set be the functor defined by

F (A) := dom A and F (ρ : A → A′) := ρ : dom A → dom A′. Then

(CompPower, U) is a construct.

We will usually refer to the construct (CompPower, U) simply by

CompPower, as the meaning is clear from the context.

Note that the forgetful functor U above is faithful but neither full nor

an embedding.

Note 78. The construct CompPower is not amnestic since we allow dif-

ferent computational models with the same extensionality. For example,

having the recursive functions and the 3-counter machine models as differ-

ent objects, while they both operate over the natural numbers and compute

the same set of functions.

Note 79. There are power comparison notions in which the mapping be-

tween domains is not a function but rather a relation (see Chapter 5). In

such a case CompPower cannot be viewed as a construct (a concrete cate-

gory over Set), but may be viewed as a concrete category over the category

Rel of relations. In Rel the objects are sets and the morphisms are relations

between sets. (The notation ‘Rel’ is not always used to mark this category.

For example in [1] it has a different usage.) Some of these comparison no-

tions are based on a surjective function from the domain of the at least as

powerful model to the domain of the other model. In such a case, one may

still view CompPower as a construct but should change the definition of a

morphism η : A → B to mean that [[A]]η ⊇ [[B]]. However, this is not very

standard, and does not go along with some categorial definitions as “fibres”.

Fibres and types of morphisms. A further investigation of the

CompPower construct shows additional similarities between our case and

standard definitions of category-theory.

The objects of a concrete category are divided into “fibres”. A fibre

is a preordered class of all objects that are mapped to the same object of

the base category. In our case, a fibre gathers all computational models

with the same domain and it is ordered by containment over the models’

extensionality.

Cat-Definition 8 (Fibre [1, p. 63]). Let (A, U) be a concrete category over

X.

1. The fibre of an X-object X is the preordered class consisting of all

A-objects A with U(A) = X ordered by:
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2. A ≤ B if and only if there exists a morphism ρ : A → B, such that

U(ρ) = idX .

3. A-objects A and B are said to be equivalent, provided that A ≤ B and

B ≤ A.

4. (A, U) is said to be amnestic provided that its fibres are partially or-

dered classes; i.e. no two different A-objects are equivalent.

5. (A, U) is said to be fibre-small provided that each of its fibres is small,

i.e. a preordered set.

Note that the definition of amnestic here coincides with that of Cat-

definition 4.

CompPower is not fibre-small, as we allow any computational model.

It is also not amnestic, as explained in Remark 78.

Proposition 80.

1. The fibres of CompPower consist of computational models operating

over the same domain.

2. We have that A ≤ B for computational models A and B if and only if

[[A]] ⊆ [[B]].

3. We have that A and B are equivalent, for computational models A and

B, if and only if [[A]] = [[B]].

We continue with some standard classifications of morphisms.

Cat-Definition 9 (Monomorphism, Epimorphism and Bimorphism [1, pp.

109–113]).

• A morphism f : A → B is said to be a monomorphism provided that

for all pairs of morphisms h : C → A and k : C → A such that

f◦h = f◦k, it follows that h = k.

• A morphism f : A→ B is said to be an epimorphism provided that for

all pairs of morphisms h : B → C and k : B → C such that h◦f = k◦f ,

it follows that h = k.

• A morphism f : A→ B is said to be a bimorphism provided that it is

simultaneously a monomorphism and an epimorphism.
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Proposition 81.

• A morphism of CompPower is monomorphism if and only if its un-

derlying mapping between domains is injective.

• A morphism of CompPower is an epimorphism if and only if its

underlying mapping between domains is surjective.

• A morphism of CompPower is a bimorphism epimorphism if and

only if its underlying mapping between domains is bijective.

Power comparison and interpretation completeness. We are now in

a position to define the power comparison notion (Definition 52) as well as

interpretation-completeness (Definition 22) in the terminology of category

theory.

Definition 82.

• Object B is at least as powerful as object A if there is a monomorphism

ρ : A→ B.

• Object B is bijectively at least as powerful as object A if there is a

bimorphism π : A→ B.

Proposition 83. The power comparison definition (Definition 52) coincides

with Definition 82 applied to the CompPower category.

Definition 84. An object A of a concrete category is interpretation-

complete if for every object B such that A ≤ B and for which there is a

monomorphism ρ : B → A, it follows that A and B are equivalent.

Additional properties. We define below some additional properties,

while using some notational shortcuts, as explained in Remark 76.

Cat-Definition 10 (Balanced category [1, p. 113]). A category is called

balanced provided that each of its bimorphisms is an isomorphism.

Proposition 85. The category CompPower is not balanced.

This is simply because the at least as powerful model may have additional

functions.
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Cat-Definition 11 (Embedding [1, p. 134]). Let (A, U) be a concrete

category over X.

• An A-morphism f : A → B is called initial provided that for any

A-object C an X-morphism g : U(C) → U(A) is an A-morphism

whenever f◦g : U(C) → U(B) is an A-morphism.

• An initial morphism f : A → B that has a monomorphic underlying

X-morphism U(f) : U(A) → U(B) is called an embedding.

• If f : A→ B is an embedding, then (f,B) is called an extension of A

and (A, f) is called an initial subobject of B.

Though the term “embedding” is used in other mathematical fields in

a way that resembles our notion of power comparison, it seems not to be

the case here. It turns out that even when the underlying mapping between

domains is the identity, the mapping between computational models need

not be an initial mapping or an embedding.

Proposition 86. There are non-initial morphisms ρ : A → B in

CompPower, such that the underlying mapping U(ρ) between domains is

the identity.

Proof. Let A,B and C be three computational models such that A ( C ( B.

We have a morphism ρ : A → B on top of the identity mapping between

domains, as well as a morphism η : C → B on top of the identity mapping

between domains. However, we don’t have a morphism from C to A based

on the identity mapping between domains, as A ( C.

Related categories. There are known categories for automata simula-

tion and for algebraic embedding [1, pp. 22–23]. The first corresponds to

“mechanical” simulations, mapping between automata by mapping between

their internal elements (states, transition function, etc..). The latter pro-

vides the standard embedding of model-theory, which maps between func-

tions with the same name.
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Chapter 5

Philosophical justifications

for the comparison notion

We discuss, in this chapter, the subjectiveness of viewing the mathematical

properties of nature, and the possibility of comparing computational models

having alternate views of the world. For that purpose, we propose a con-

ceptual framework for power comparison, by linking computational models

to hypothetical physical devices. Accordingly, we deduce a mathematical

notion of relative computational power, allowing for the comparison of ar-

bitrary models over arbitrary domains (Definition 87). When considering

models that have the identity function and that are closed under functional

composition, this notion coincides with our decent-comparison notion (Def-

inition 52).

We are only interested in the computational aspect of computational

models, that is, which problems can be solved by a model, regardless of the

solution’s complexity or the model’s mechanisms. Hence, we are interested

in models’ extensionality, which is a set of (partial) functions (or multivalued

functions) over the domain of its operation (See Definitions 1 and 60).

A reasonable starting point for comparing models over different domains

is the belief that isomorphic models are of identical power. That is, mod-

els computing the same set of functions, up to a different naming of their

domain elements, are – for all intents and purposes – deemed equipotent.

Isomorphism may be a good starting point, but it is not general enough, if

only because one model might operate over a domain of a larger cardinality

than of the other.

We propose a general, philosophical, definition of a computational model:

we understand a computational model to be a mathematical modeling and

idealization of some hypothetical physical device, from a specific point of
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view of the world. Accordingly, we provide some possible meaning of rela-

tive computational power. In Section 5.2, we formalize this meaning into a

mathematical notion.

5.1 Conceptual framework

We start with a general, philosophical, definition of a computational model,

and then suggest some possible meaning of relative computational power.

This intuition will be formalized in Section 5.2. It should be noted that the

conceptual framework is inspired by linkage to hypothetical physical devices,

providing a definition with “world entities”; however, these entities are later

obviated by mathematical simplifications.

5.1.1 What is a computational model?

We can think of a computational model as a mathematical modeling and

idealization of some hypothetical physical devices, from a specific point of

view of the world (see Figure 5.1).

• A physical device receives a physical input and returns a physical out-

put. For example, an electric device may take some electric voltage

at two of its pins as input, and return a voltage at two other pins as

output.

• A corresponding computational model takes a specific point of view

of the physical world. For example, a model of a digital computer

might view a voltage lower than 0.5v as the binary value 0 and of

0.5v or higher as 1. That is, the domain of the model, D, is a “view”

of the physical world, W . This view is a partial surjective function

v : W → D.

• The device computes a function on world entities (in our example

above, ξ : R → R), while from the model’s point of view it computes

a function on its domain (in our example, f :{0, 1} → {0, 1}).

A computational model, by itself, can be viewed as a “black box,” com-

puting a set of partial functions. The domain and range of functions are

identical.

The modeling of a hypothetical device from a specific point of view of

the world will be at the heart of our method of comparing different models.

The world can be chosen to be any set of cardinality at least as large as the

cardinality of the model’s domain.
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Figure 5.1: A computational model is a mathematical modeling of some

hypothetical physical devices, from a specific point of view of the world

The idea that a model encapsulates a point of view of the world is shared

by Minsky [30]:

We use the term “model” in the following sense: To an observer

B, an object A* is a model of an object A to the extent that B

can use A* to answer questions that interest him about A. The

model relation is inherently ternary. . . . It is understood that B’s

use of a model entails the use of encodings for input and output,

both for A and for A*. If A is the world, questions for A are

experiments.

World size. We want to allow the world-domain W to be as big as re-

quired, as well as the resolution of its elements to be enlarged as much as

required. That is, all elements x ∈W may be considered as sets of the same

cardinality.

Different domain and range. There are models with different domain

and range, like string input and Boolean output. A generalized view is to

consider the “actual” model’s domain to be the union of the original domain

and range.

Uniform computation. It is common to have models with functions of

any fixed arity (f(x), g(x, y), h(x, y, z), . . . ), like the recursive functions, for

instance, while we deal here only with unary functions (f(x)). We consider

the “actual” domain (and range) of the former models to be the set of all

finite tuples of elements of the original domain, allowing us to restrict at-

tention to unary functions. This accords with the standard view taken for
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Turing machines, the view taken for the BSS model [6, pp. 69–70], and im-

plicitly the view taken for the recursive functions when compared to Turing

machines.

Computing over structures. There are models defined over structures,

that is, over sets of elements, equipped with “built-in” functions and rela-

tions. See, for example, [6, 13, 47]. We consider the underlying set to be the

domain, and include the structure’s functions and relations in the model.

Local nondeterminism. A model with nondeterministic functions, op-

erating within equivalence classes, may be interpreted as a deterministic

model operating over those equivalence classes. For example, we can view a

digital computer as operating over intervals of real-valued voltages.

5.1.2 Comparing computational power

We generally say that model B is conceptually at least as powerful as model

A, written B < A, if it can do whatever A does. When both models have

the same domain representation, it means “containment”: B is at least as

powerful as A if it computes all the functions that A does. The question is

how should one compare models operating over different domains, as they

compute formally-different functions.

We say that B is conceptually at least as powerful as A if B has the po-

tential to do whatever A does for every possible user, and has the abstraction

capabilities of A. See Figures 5.2 and 5.3, and Definition 87.

We formalize the above characterizations as mathematical notions in the

next section.

5.2 The formal comparison notion

We formalize here the conceptual framework of the previous section.

Notation. We use here the Z-standard [14] for function arrows. Specifi-

cally, −7→ denotes a partial function, →→ is used for a total surjective function,

֌ is an injection, and ֌→ is a bijection. We use double-arrows for mappings

(multi-valued functions). So ⇉⇉ denotes a total surjective mapping, and |⇉⇉

a partial surjective mapping.

We consider a computational model A over domain D to be an abstrac-

tion of an object that computes a set of partial functions f : D−7→ D.

Accordingly, we get the definition given in Definition 1.
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Figure 5.2: The at least as powerful model, B, has the potential to provide

all the functionality of the other model, A, from any user point of view

W
The world

B’s domain

A’s domain

u

v

g

Figure 5.3: The function g ∈ [[B]] provides model B the abstraction capa-

bilities of model A
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Some clarifications regarding function notations:

• Two partial functions, f and g, over the same domain are (extension-

ally) equal, denoted f = g, if they are defined for exactly the same

elements of the domain and have the same value whenever they are

both defined.

• A function f : D−7→ D′ is extended to subsets X ⊆ D of the domain

by f(X) := {f(x) | x ∈ X}.

• A mapping ρ : D ⇉ D′ is a binary relation betweenD andD′, that is, a

subset ofD×D′. Its inverse ρ−1 is defined, as usual, as {〈y, x〉 | 〈x, y〉 ∈

ρ}. Any mapping may also be viewed as a total function ρ : D →

P(D′), from D to subsets of D′, in the sense that ρ : x 7→ {y | 〈x, y〉 ∈

ρ}. Thus, its inverse, ρ−1 : D′ ⇉ D, is the function ρ−1 : D′ → P(D),

from D′ to the subsets of D, such that ρ−1 : y 7→ {x | y ∈ ρ(x)}.

• A total surjective mapping ρ : D ⇉⇉ D′ is a total function, ρ : D →

P(D′), from D to the subsets of D′, such that
⋃
x∈D ρ(x) = D′, and

ρ(x) 6= ∅ for all x ∈ D.

Conceptually, we demanded, in Section 5.1, that the at least as powerful

model, B, should have the potential to provide all the functionality of the

other model, A, from any user point of view. How should we formalize it?

We will require that the user of model A will be able to use a physical device

modeled by B instead of the device modeled by A. That is, the user will

get exactly the same results, from her point of view, as if she was using the

device modeled by A.

An element x ∈ dom A represents some physical elements v−1(x), where

v : W →7→ dom A is the view of the world W by A. Model B views these

physical elements as u◦v−1(x) (which might be many different elements in

dom B), where u : W →7→ dom B is the view of the world by B. Analogously,

an element y ∈ dom B represents some physical elements u−1(y), which

are viewed by A as v◦u−1(y). Hence, a function f ′ ∈ [[B]] provides the

functionality of a function f ∈ [[A]], from the point of view of a user of A,

if v◦u−1◦f ′◦u◦v−1(x) = {f(x)} for all x ∈ dom A. See an illustration in

Figure 5.2.

In addition, we require that B should have an “abstraction” function,

which ensures that when it has a more detailed view of the world, it may also

gather various points into a single one, obtaining the abstraction capabilities

of A. See an illustration in Figure 5.3.
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We formalize below the comparison notion, as explained above. We then

prove that it is equivalent to a simplified notion, in which the “world views”

are replaced with a direct mapping between model domains.

Definition 87 (Conceptual Power Comparison). Model B is conceptually

at least as powerful as model A, denoted B < A, if for every domain W

(the world) and partial surjection v : W →7→ dom A (the view of W by A),

there are a partial surjection u : W →7→ dom B (the view of W by B) and a

function g ∈ [[B]] (the abstraction function), such that

(a) for every function f ∈ [[A]] there is a function f ′ ∈ [[B]], such that

v◦u−1◦f ′◦u◦v−1(x) = {f(x)} for all x ∈ dom A,

(b) g(z) = g(y) iff v◦u−1(z) = v◦u−1(y) for all y, z ∈ dom B, and

(c) v◦u−1◦g(y) = v◦u−1(y) for all y ∈ dom B.

The first condition, (a), says that B computes every function of A, up to

the mapping between the domains (v◦u−1). Condition (b) says that the

(abstraction) function g ∈ [[B]] distinguishes between the equivalence classes

generated by the mapping, while (c) says that the distinction is made by

choosing a representative element within each class.

Comparison via a correlation mapping that is a partial surjective mapping

is in the spirit of the “representation” of [51, p. 33].

Comparison up to equivalence classes. With the definitions above,

we required the as-powerful model, B, to have all the functionality of model

A, providing exactly the same values up to the mapping between domains

(v◦u−1◦f ′◦u◦v−1(x) = {f(x)}). This requirement may be loosened, by re-

quiring B to provide the same values as A, up to the distinguishing ability

of A. That is, two elements, e and r, are indistinguishable by model A if

for all f ∈ [[A]] we have that f(e) = f(r). Indistinguishable elements, e and

r ∈ dom A, may be considered equivalent with respect to A, denoted e =A r.

The comparison notion above may be loosened accordingly, denoted <′, by

requiring that v◦u−1◦f ′◦u◦v−1(x) =A {f(x)}.

Simplifications. The comparison notion may be simplified, replacing the

“world entities” with a direct mapping between the models’ domains.

Theorem 88. Model B is conceptually at least as powerful as model A if and

only if there are a total surjective mapping ρ : dom B ⇉⇉ dom A (correlation

mapping) and function g ∈ [[B]] (abstraction function), such that:
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(a) for every function f ∈ [[A]] there is a function f ′ ∈ [[B]] such that

ρ◦f ′◦ρ−1(x) = {f(x)} for all x ∈ dom A,

(b) g(z) = g(y) iff ρ(z) = ρ(y) for all y, z ∈ dom B, and

(c) ρ◦g(y) = ρ(y) for all y ∈ dom B.

Proof. Assume that B < A. Since Definition 87 refers to every domain W

(world), it follows that if there is a view of W by A by a partial surjection

v : W →7→ dom A, then there is also a view of another domain W ′ :=

Im v−1 ∩ Im u−1 (over which both v and u are defined) by A by a total

surjection v′ : W ′ →→ dom A. Hence, the corresponding view of W ′ by B is

also a total surjection u′ : W ′ →→ dom B. Define a total surjective mapping

ρ : dom B ⇉⇉ dom A, by ρ := v′◦u′−1. We have that requirements (a)–(c)

above are fulfilled.

As for the other direction, assume a total surjective mapping ρ :

dom B ⇉⇉ dom A and a function g, via which requirements (a)–(c) above

are fulfilled. We construct the proof in three steps:

1. Specific world and views. Define a domain W (a world) as a subset of

dom A × dom B, by W := {〈a, b〉 | a ∈ ρ(b)}. Define total surjective

functions v : W →→ dom A and u : W →→ dom B (the views) by

v(〈a, b〉) := a and u(〈a, b〉) := b, for all 〈a, b〉 ∈ W . We have specific

views by A and B for which the conditions of the conceptual definition

is satisfied, that is for every function f ∈ [[A]] there is f ′ ∈ [[B]], such

that v◦u−1◦f ′◦u◦v−1(x) = {f(x)} for all x ∈ dom A.

2. Specific world and all views. Let W, v and u be as in the previous

step. Let m : W →7→ dom A be an arbitrary view by A of the world W .

By the conceptual assumption on the world size, we may consider the

domain W as a domain W ′, by replacing each element y ∈ W with

a set Y of cardinality |W |. Accordingly, the view m becomes a view

v′ : W ′ →7→ dom A, where |v′−1(x)| = |W | for all x ∈ dom A. Define a

partial surjective function ξ : W ′ →7→ W , such that v′(z) = v◦ξ(z) for

all z ∈W ′. Define the view by B of the world, as the partial surjective

function u′ : W ′ →7→ dom B, by u′(z) := u◦ξ(z) for all z ∈ W ′. We

have that for every function f ∈ [[A]] there is f ′ ∈ [[B]], such that

v′◦u′−1◦f ′◦u′◦v′−1(x) = {f(x)} for all x ∈ dom A.

3. All worlds and all views. Let W be as in the previous step. Let W̃

be an arbitrary world and ṽ : W̃ →7→ dom A an arbitrary view by

A of the world W̃ . By the conceptual assumption on the world size
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we can enlarge the world |W̃ | as required, thus we may assume that

|W̃ | ≥ |W |. Define a total surjective function τ : W̃ →→ W such that

τ(x) = τ(y) implies that ṽ(x) = ṽ(y) for every x, y ∈ W̃ . Define a

view v : W →7→ A by v := ṽ◦τ−1. By the previous step there is a

corresponding view u : W →7→ B, hence we have the required view

ũ : W̃ →7→ B by ũ := u◦τ .

Example 89. Consider a modeling of a simple electric-cable by some com-

putational model, denoted EC, providing only the identity function over the

reals. Then TM 6< EC and EC 6< TM.

Example 90. Let REC be the standard recursive functions over N, and

RR a duplication of the recursive functions over two different copies of the

natural numbers (e.g. red and blue numbers). That is, dom RR = N ⊎ Ñ,

where Ñ is a different copy of the natural numbers, and every function of

RR operates independently on each copy of the naturals. Meaning, for every

g ∈ RR we have that g(x) ∈ N if x ∈ N and g(x) ∈ Ñ if x ∈ Ñ. We have

then that REC < RR, while RR is not as powerful as REC, since it does not

have the necessary abstraction function.

Closure under composition and inclusion of the identity function.

When the at most as powerful model includes the identity function (λx.x),

the comparison notion may be simplified, requiring the correlation mapping

(ρ) to be a surjective function instead of a surjective mapping. When the

as-powerful model is closed under functional composition, it may be further

simplified, getting the decent-comparison notion (Definition 52).

Theorem 91. Let A be a computational model with the identity function

(λx.x ∈ [[A]]), then model B is conceptually at least as powerful as A if and

only if there exist a total surjective function ϕ : dom B →→ dom A and a

function g ∈ [[B]], such that:

1. for every function f ∈ [[A]] there is a function f ′ ∈ [[B]] such that

ϕ◦f ′(y) = f◦ϕ(y) for all y ∈ dom B,

2. ϕ◦g(y) = ϕ(y) for all y ∈ dom B, and

3. g(z) = g(y) iff ϕ(z) = ϕ(y) for all y, z ∈ dom B.

Proof. The first direction is obvious, as a function is also a mapping. For the

other direction, let A be a computational model with the identity function
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(ι := λx.x ∈ [[A]]), and let model B < A via a total surjective mapping

ρ : dom B ⇉⇉ dom A. Assume, by contradiction, that ρ is not a function.

Accordingly, there are elements e 6= t ∈ dom A and z ∈ dom B, such that

ρ−1(e) = ρ−1(t) = z. Since B < A, it follows that there is a function

ι′ ∈ [[B]], such that ρ◦ι′◦ρ−1(x) = {ι(x)} for all x ∈ dom A. Therefore,

ρ◦ι′(z) = {e} = {d}. Contradiction.

When the as-powerful model is closed under functional composition, it

may be further simplified, replacing the surjective function with an opposite

injection (ψ : dom A ֌ dom B). Hence, getting the decent-comparison

notion (Definition 52).

Theorem 92. Let A be a computational model with the identity function

(λx.x ∈ [[A]]). Then a model B, closed under functional composition, is

conceptually at least as powerful as A if and only if B is decently at least as

powerful as A. That is, under the above conditions, B < A iff B % A.

Proof. Let model A with the identity function, and model B closed under

functional composition.

Assume B < A via a total surjective function ϕ : dom B →→ dom A and a

function g ∈ [[B]], as in Theorem 91. Define an injection ρ : dom A ֌ dom B

by ρ := g◦ϕ−1. Since B < A via ϕ, it follows that for every function f ∈ [[A]]

there is a function f ′ ∈ [[B]], such that ϕ◦f ′(y) = f◦ϕ(y) for all y ∈ dom B.

By the closure of B to functional composition, we have that there is also a

function f ′′ ∈ [[B]], such that f ′′ = g◦f ′. Thus, for every x ∈ dom A we have

that f(x) = ϕ◦f ′◦ϕ−1 = ϕ◦g−1◦f ′◦g◦ϕ−1 = ρ−1◦f ′◦ρ. Hence, B % A via ρ

and g.

As for the other direction, we get an analogous proof by defining the total

surjective function ϕ : dom B →→ dom A by ϕ := ρ−1◦g. By the assumption

that B % A via ρ, we have that for every f ∈ [[A]] there is f ′ ∈ [[B]], such that

f(x) = ρ−1◦f ′◦ρ for all x ∈ dom A. Thus, by the closure of B to function

composition it also has a function f ′′ = f ′◦g. Hence, for every y ∈ dom B

we have that ϕ◦f ′′(y) = f◦ϕ(y), as required.

5.3 Ramifications of familiar notions

Various methods have been used to compare the computational power of

competing models.

Extended domains. It is common to claim that a function can be re-

placed by any of its extensions. That is, a function f : D → D can be
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replaced by f ′ : D′ → D′ if D ⊆ D′ and f = f ′ ↾D. See, for example, [15, p.

654]: “Here we adopt the convention that a function on N is in an analog

class C if some extension of it to R is, i.e. if there is some function f̃ ∈ C

that matches f on inputs in N.”

By the conceptual framework, “B extends A” can be interpreted as “B

having the potential to be at least as powerful as A for a user who has both

domain views.” For example, one can consider a user who views the world

as real numbers, but can identify the natural numbers among them.

This approach is not appropriate as a general power comparison notion,

since the extended model B doesn’t necessarily have the abstraction capa-

bilities of A. For example, a mathematician working with paper and pencil

may consider various physical entities to “be” the symbol “a” (e.g. a, a,

a, a, a). A model that lacks the abstraction of the various “a”s, treating

each of them totally differently, is not as powerful. Another example is a

model that accurately doubles a real number (λx.2x). It cannot replace

the doubling function on the natural numbers for a user who doesn’t have

the ability to see so accurately (as might be the case with human users).

Consider, also, a model with real input (as voltage or frequency) having a

function h that is exactly the TM-halting function for integer inputs, but

has the value 0 otherwise. So that unless we give it the exact value as input,

the result is meaningless. Would one say that it is hypercomputational in

any meaningful sense?

Embedding. Extending the domain is a special case of “embedding”,

which is power comparison based on an injection between domains, lack-

ing the requirement for an abstraction function. This is exactly the basic

power comparison definition given in Definition 52. The reasons for the in-

adequacy of embedding as a generic power comparison notion are analogous

to that of domain-extending.

Effective encoding. A common approach for comparing models over dif-

ferent domains is to require some manner of effectiveness of the encoding;

see [20, p. 21] and [25, p. 290], for example. Two basic methods are usually

applied for effective encoding:

1. One can demand informal effectiveness: “The coding is chosen so that

it is itself given by an informal algorithm in the unrestricted sense”

[38, p. 27].

2. Or one can require encoding effectiveness via a specific model, say,

Turing machines: “The Turing-machine characterization is especially
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convenient for this purpose. It requires only that the expressions of the

wider classes be expressible as finite strings in a fixed finite alphabet

of basic symbols” [38, p. 28].

By the conceptual framework, an “effective comparison” means that B

is at least as powerful as A for a human user, assuming humans are capable

of “effective” representations.

Effectivity is a useful notion; however, it is unsuitable as a general power

comparison notion. The first, informal approach is too vague, while the

second can add computational power when dealing with subrecursive models

and is inappropriate when dealing with non-recursive models.

We discuss the issue of effectiveness further in the next chapter.
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Chapter 6

Effective Computation

Background. In 1936, Alonzo Church and Alan Turing each formulated a

claim that a particular model of computation completely captures the con-

ceptual notion of “effective” computability. Church [16, p. 356] proposed

that effective computability of numeric functions be identified with Gödel

and Herbrand’s general recursive functions, or equivalently, with Church

and Kleene’s lambda-definable functions of positive integers. Similarly, Tur-

ing [48] suggested that his computational model, namely, Turing machines,

could compute anything that might be mechanically computable, but his

interests extended beyond numeric functions.

Church’s original thesis concerned functions over the natural numbers

with their standard interpretation [16, p. 346, including fn. 3] (emphasis

ours):

The purpose of the present paper is to propose a definition of

effective calculability. As will appear, this definition of effec-

tive calculability can be stated in either of two equivalent forms,

(1) that a function of positive integers will be called effectively

calculable if it is λ-definable. . . , (2) that a function of positive

integers shall be called effectively calculable if it is recursive. . . .

Kleene, when speaking about Church’s Thesis, also refers to functions over

the natural numbers [27, pp. 58, 60] (emphasis ours):

We entertain various proposition about natural numbers . . . This

heuristic fact [all recognized effective functions turned out to be

general recursive], as well as certain reflections on the nature of

symbolic algorithmic processes, led Church to state the following

thesis. The same thesis is implicit in Turing’s description of

computing machines.
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THESIS I. Every effectively calculable function (effectively de-

cidable predicate) is general recursive.

Turing, on the other hand, explicitly extends the notion of “effective”

beyond the natural numbers [49, fn. p. 166] (emphasis added):

We shall use the expression “computable function” to mean a

function calculable by a machine, and we let “effectively calcu-

lable” refer to the intuitive idea without particular identification

with one of these definitions. We do not restrict the values taken

by a computable function to be natural numbers; we may for in-

stance have computable propositional functions.

But for Turing, even numerical calculations operate on their string repre-

sentation.

Turing’s model of computability was instrumental in the wide acceptance

of Church’s Thesis. As Trakhtenbrot explained [46]:

This is the way the miracle occurred: the essence of a process

that can be carried out by purely mechanical means was under-

stood and incarnated in precise mathematical definitions.

Objective. Our purpose, in Section 6.1, is to formalize and analyze the

Church-Turing Thesis when referring to functions over arbitrary domains.

Based on this definition, and due to the interpretation-completeness of

Turing machines, we define, in Section 6.2, effective representations of con-

structible domains.

Equipped with a plausible interpretation of the Church-Turing Thesis

over arbitrary domains, we investigate, in Section 6.3, the general class of

“effective computational models”.

6.1 The Church-Turing Thesis over arbitrary do-

mains

Simply put, the Church-Turing Thesis is not well defined for arbitrary do-

mains: the choice of domain interpretation might have a significant influence

on the outcome. We explore below the importance of the domain interpre-

tation and suggest how to overcome this problem. The main point is that

regardless of how numbers or strings are represented in an effective model

of computation, the functions computed are general recursive / Turing com-

putable. Accordingly, we consider the effectiveness of a set of functions

rather than of a single function (see Thesis A below).
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Computational model versus single function. A single function over

an arbitrary domain cannot be classified as computable or not. Its com-

putability depends on the representation of the domain.1 For example, the

(uncomputable) halting function over the natural numbers (sans the stan-

dard order) is isomorphic to the simple parity function, under a permutation

of the natural numbers that maps the usual codes of halting Turing machines

to strings ending in “0”, and the rest of the numbers to strings ending with

“1”. The result is a computable standalone “halting” function.

An analysis of the classes of number-theoretic functions that are com-

putable relative to different notations (representations) is provided by

Shapiro [40, p. 15]:

It is shown, in particular, that the class of number-theoretic

functions which are computable relative to every notation is too

narrow, containing only rather trivial functions, and that the

class of number-theoretic functions which are computable rela-

tive to some notation is too broad containing, for example, every

characteristic function.

An intuitive approach is to restrict the representation only to “natural”

mappings between the domains. However, when doing so in the scope of

defining “effectiveness”, one must use a vague and undefined notion.

This problem was already pointed out by Richard Montague in 1960 [32,

pp. 430–431]:

Now Turing’s notion of computability applies directly only to

functions on and to the set of natural numbers. Even its ex-

tension to functions defined on (and with values in) another de-

numerable set S cannot be accomplished in a completely unob-

jectionable way. One would be inclined to choose a one-to-one

correspondence between S and the set of natural numbers, and

to call a function f on S computable if the function of natural

numbers induced by f under this correspondence is computable

in Turing’s sense. But the notion so obtained depends on what

correspondence between S and the set of natural numbers is cho-

sen; the sets of computable functions on S correlated with two

such correspondences will in general differ. The natural proce-

dure is to restrict consideration to those correspondences which

1There are functions that are inherently uncomputable, via all domain representations.

For example, a permutation of some countable domain, in which the lengths of the orbits

are exactly the standard encodings of the non-halting Turing machines.
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are in some sense ‘effective’, and hence to characterize a com-

putable function on S as a function f such that, for some effective

correspondence between S and the set of natural numbers, the

function induced by f under this correspondence is computable

in Turing’s sense. But the notion of effectiveness remains to be

analyzed, and would indeed seem to coincide with computability.

Stewart Shapiro suggests a definition of “acceptable notation”, based on

several intuitive concepts [40, p. 18]:

This suggests two informal criteria on notations employed by

algorithms:

(1) The computist should be able to write numbers in the no-

tation. If he has a particular number in mind, he should

(in principle) be able to write and identify tokens for the

corresponding numeral.

(2) The computist should be able to read the notation. If he

is given a token for a numeral, he should (in principle) be

able to determine what number it denotes.

It is admitted that these conditions are, at best, vague and per-

haps obscure.

Michael Rescorla argues that the circularity is inherent in the Church-

Turing Thesis [36]:

My argument turns largely upon the following constraint: a suc-

cessful conceptual analysis should be non-circular . . . . I will sug-

gest that purported conceptual analysis involving Church’s thesis

generate a subtle yet ineliminable circularity: they characterize

the intuitive notion of computability by invoking the intuitive

notion of computability. . . . So that syntactic analysis can illu-

minate the computable number-theoretic functions, we correlate

syntactic entities with non-syntactic entities like numbers. We

endow the syntax with a primitive semantics. I submit that, in

providing this semantics, we must deploy the intuitive notion of

computability. Specifically, we must demand that the semantic

correlation between syntactic entities and non-syntactic entities

itself be computable. But then the proposed analysis does not

illuminate computability non-circularly.
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A possible solution is to allow any representation (injection between

domains), while checking for the effectiveness of an entire computational

model. That is, to check for the computability of a function together with

the other functions that are computable by that computational model. The

purpose lying behind this idea is to view the domain elements as arbitrary

objects, deriving all their meaning from the model’s functions. For example,

it is obvious that the halting function has a meaning only if one knows the

order of the elements of its domain. In that case, the successor function

provides the meaning for the domain elements.

Two variants of this solution are to either allow only bijective represen-

tations, or else alow injections provided that their images are computable.

These variations correspond to the variants of our comparison notion (Def-

inition 52).

Adopting the above approach of checking for computability of an entire

computational model, we interpret the Church-Turing Thesis as follows:

Thesis A. All “effective” computational models are of equivalent

power to, or weaker than, Turing machines.

By “effective”, in quotes, we mean effective in its intuitive sense.

By a “computational model” we refer to any object that is associated

with a set of partial functions (Definition 1). By “equivalent to, or weaker

than” we refer to the comparison notions of Definition 52.

A strict supermodel of the recursive functions (or Turing machines) is a

“hypercomputational” model.

Definition 93 (Hypercomputational Model). A computational model H

is hypercomputational if it is stronger than Turing machines. That is, if

H � TM. (The corresponding variations, using bijective power comparison

or decent power comparison, are H ≩ TM or H � TM.)

Our interpretation of the Church-Turing Thesis (Thesis A) agrees with

Rice’s [37, p. 298] and Rabin’s definition of a computable group [35, p. 343]:

DEFINITION 3. An indexing of a set S is a one to one mapping

i : S → I such that i(S) is a recursive subset of I. . . .

DEFINITION 4. An indexing i of a group G is admissible if

the function m from i(G) × i(G) into i(G) . . . is a computable

function. . . .

DEFINITION 5. A group is computable if it possesses at least

one admissible indexing.
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Rice and Rabin refer to groups, fields, and rings; however, the idea

naturally generalizes to any algebraic structure, as done by Lambert [28, p.

594]:

Following Rabin . . . we let an (admissible) indexing for structure

U be a 1-1 function κ : A→ ω such that

(i) K = range κ is recursive;

(ii) each κ∗(Fa) and κ∗(Ra) are recursive relative to K . . . , where

κ∗ applied to an (unmixed) operation or relation in A is the

operation or relation in ω naturally induced by κ.. . .

U is computable iff there is an indexing for U.

The term “computable group” was introduced by Rice in [37] and, inde-

pendently, by Rabin in his dissertation on 1956. In the same year, Fröhlich

and Shepherdson [21] introduced “explicit algebraic systems”, which are

identical to “computable systems” in the sense of Rice and Rabin, up to

isomorphism (see [35, p. 343] for a detailed comparison between these defi-

nitions).

Influence of representations. The Church-Turing Thesis, as stated

above (Thesis A), matches the intuitive understanding only due to the

interpretation-completeness of Turing machines (Theorem 31). Were the

thesis defined in terms of two-counter machines (2CM), for example, it would

make no sense: a computational model is not necessarily stronger than 2CM

even if it computes strictly more functions (see Section 3.3.4). This is also

the case with the untyped lambda calculus (see Section 4.3).

6.2 Effective representations

What is an effective representation? We argued above that a “natural rep-

resentation” must be a vague notion when used in the context of defining

effectiveness. We avoided the need of restricting the representation by check-

ing the effectiveness of entire computational models. But what if we adopt

the Church-Turing Thesis (Thesis A); can we then define what is an effective

string representation?

Simply put, there is a problem here. Turing machines operate only

over strings. Thus a string representation, which is an injection from some

domain D to Σ∗, is not itself computable by a Turing machine. All the same,

when we consider, for example, string representations of natural numbers,

we can obviously say regarding some of them that they are effective. How is

that possible? The point is that we look at the natural numbers as having
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some structure, usually assuming their standard order. A function over the

natural numbers without their order is not really well-defined. As we saw,

the halting function and the simple parity function are exactly the same

(isomorphic) function when numbers are unordered.

Hence, even when adopting the Church-Turing Thesis, a domain without

any structure cannot have an effective representation. It is just a set of arbi-

trary elements. However, if the domain comes with a generating mechanism

(as the natural numbers come with the successor) we can consider effective

representations.

Due to the interpretation-completeness of the recursive functions and

Turing machines, we can define what is an effective string representation of

the natural numbers (with their standard structure). A similar definition

can be given for other domains, provided that they come with some finite

means of generating them all, akin to successor for the naturals.

Definition 94 (Effective representation). An effective representation of the

natural numbers by strings is an injection ρ : N → Σ∗, such that ρ(s) is

Turing-computable (ρ(s) ∈ [[TM]]), where s is the successor function over

N.

That is, a representation of the natural numbers is effective if the successor

function is Turing-computable via this representation.

Note 95. One may also require that the image of the representation ρ is

Turing computable, along the decent power comparison notion. In such a

case, there would also be a corresponding bijective representation (see The-

orem 28 and 32).

We justify the above definition of an effective representation by showing

that: (a) every recursive function is Turing-computable via any effective rep-

resentation; (b) every non-recursive function is not Turing-computable via

any effective representation; and (c) for every non-effective representation

there is a recursive function that is not Turing-computable via it.

Theorem 96.

(a) Let f be a recursive function and ρ : N → Σ∗ an effective representa-

tion. Then ρ(f) ∈ [[TM]].

(b) Let g be a non-recursive function and ρ : N → Σ∗ an effective repre-

sentation. Then ρ(g) /∈ [[TM]].

(c) Let η : N → Σ∗ be a non-effective representation. Then there is a

recursive function f , such that η(f) /∈ [[TM]].
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Proof. Let ξ : N → Σ∗ be some standard bijective representation via which

ξ(REC) = [[TM]] (see, for example, [26, p. 131]). The point is that, once

ρ(s) ∈ [[TM]], there are Turing-computable functions for switching between

the ρ and the ξ representations. That is, ρ ◦ ξ−1, ξ ◦ ρ−1 ∈ [[TM]]. It

can be done by a Turing machine that enumerates in parallel over both

representations until reaching the required string.

(a) Since f ∈ REC, it follows that there is a function f ′ ∈ [[TM]], such that

f = ξ−1(f ′) = ξ−1 ◦ f ′ ◦ ξ. Thus, ρ(f) = ρ ◦ f ◦ ρ−1 = ρ ◦ ξ−1 ◦ f ′ ◦ ξ ◦ ρ−1.

Hence, ρ(f) ∈ [[TM]] by the closure of TM under functional composition.

(b) Assume by contradiction that g /∈ REC but ρ(g) ∈ [[TM]]. Let g′ be the

corresponding function under the ξ representation. That is, g′ = ξ◦ρ−1ρ(g)◦

ρ ◦ ξ−1. We have by the closure of TM under functional composition that

g′ ∈ [[TM]]. Since ξ−1(g′) ∈ REC, it is left to show that ξ−1(g′) = g for

getting a contradiction: ξ−1(g′) = ξ−1◦g′◦ξ = ξ−1◦ξ◦ρ−1ρ(g)◦ρ◦ξ−1◦ξ =

ρ−1ρ(g) ◦ ρ = ρ−1ρ ◦ g ◦ ρ−1 ◦ ρ = g.

(c) By the definition of recursive representation, the successor is such a

function.

To see the importance of the interpretation-completeness property for

the definition of an effective representation, one can check that an analogous

definition cannot be provided with two-counter machines as the yardstick.

Our definition of an effective representation resembles Shapiro’s notion

of an “acceptable notation”. He proposes three necessary “semi-formal”

criteria for an acceptable notation [40, p. 19]:

(la) If the computist is given a finite collection of distinct ob-

jects, then he can (in principle) write and identify tokens for

the numeral which denotes the cardinality of the collection.

(lb) The computist can count in the notation. He is able (in

principle) to write, in order, tokens for the numerals denot-

ing any finite initial segment of the natural numbers.

(2a) If the computist is given a token for a numeral p and a

collection of distinct objects, then he can (in principle) de-

termine whether the denotation of p is smaller than the

cardinality of the collection and, if it is, produce a subcol-

lection whose cardinality is the denotation of p.

Our notion coincides with Shapiro’s second criterion (1b). It also goes

along with Weihrauch’s justifications for the effectiveness of the standard

“numberings” (representation by natural numbers). He defines a standard

numbering of a word set (the words over {a, b}, for example, are enumerated
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in the following order: ε, a, b, aa, ab, ba, bb, aaa, aab, . . .), and then proves

three claims for justifying the effectiveness of the numbering [50, p. 80–81]:

A numbering ν : N → W (Σ) is neither a word function nor a

number function, hence neither of our two definitions of com-

putability is applicable to ν. Nevertheless standard numberings

ν : N → W (Σ) are intuitively effective. The following lemma

expresses several effectivity properties of standard numberings

of word sets.

LEMMA (effectivity of standard numberings of word sets)

Let Σ,Γ and ∆ be alphabets with ∆ = Σ∪ Γ. Let νΣ (νΓ) be a

standard numbering of W (Σ) (W (Γ)).

(l) Define S, V : N → N by S(x) := x+ 1, V (x) := x · 1.

Define SΣ, VΣ : W (Σ) →W (Σ) by

SΣ := νΣSν
−1
Σ , VΣ := νΣV ν

−1
Σ .

Then SΣ and VΣ are computable.

(2) Let b ∈ Σ. Define hb : W (Σ) →W (Σ), Sb : W (Σ) → {1, 2}

and pop : W (Σ) →W (Σ) by

hb(w) = wb, Sb(w) := (1 if w = xb for some x ∈ W (Σ), 2

otherwise), and pop(ε) := ε, pop(wc) := w.

Define hbΣ : N → N, SbΣ : N → {1, 2} and popΣ : N → N by

hbΣ := ν−1
Σ hbνΣ, popΣ := ν−1

Σ pop νΣ, SbΣ := SbνΣ.

Then hbΣ, popΣ, and SbΣ are computable.

(3) The following functions p : W (∆) →W (∆) and q : N → N

are computable:

p(w) := (νΣν
−1
Γ (w) if w ∈W (Γ), ε otherwise),

q(j) := (ν−1
Γ νΣ(j) if νΣ(j) ∈W (Γ), 0 otherwise).

Our notion resembles Weihrauch’s first and second claims (the second

claim concerns the construction of strings, and plays the rôle of the successor

when reversing the “numbering” for representing numbers by strings).

6.3 Axiomatization of effective computation

Section 6.1 formalized the Church-Turing Thesis over arbitrary domains.

We now provide additional evidence for the thesis by validating it against a

class of “effective computational models”, axiomatized on top of Gurevich’s

postulates for a sequential algorithm [24].
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Dershowitz and Gurevich [19] have done something quite similar, though

handling only the effectiveness of functions over the natural numbers. They

do refer to computations over other domains, however only in the process of

computing what is a strictly numeric function.

Gurevich’s postulates are applicable for computations over any mathe-

matical structure (of first order) and aim to capture any sequential algo-

rithm. This makes them a natural candidate for axiomatizing effectiveness

over arbitrary domains. Yet, there are several problems:

1. The postulates concern algorithms and not computations with input

and output.

2. Initial states are not limited; thus, they might not be effective.

3. The postulates consider a single algorithm and not an entire compu-

tational model.

We address the first issue, in Section 6.3.1, by adding special input and

output constants, and allowing a single initial state, up to differences in

input. The second issue is addressed by adding Axiom 4, which limits the

initial data. The third issue is addressed, in Section 6.3.2, by requiring all

functions of the same model to share the same domain representation.

A proof is provided, showing that this axiomatization yields the same

definition of effectiveness as the Church-Turing Thesis does. It is based on

Gurevich’s Abstract State Machine Theorem [24], showing that sequential

abstract state machines (ASMs) capture sequential algorithm. As a result,

we get three equivalent definitions of an effective computational model over

an arbitrary domain. See Figure 6.1.

We start in Section 6.3.1, with an axiomatization of “sequential proce-

dures”, along the lines of Gurevich’s sequential algorithms [24]. Next, we

axiomatize, in Section 6.3.2, “effective procedures” as a subclass, satifying

an “effectivity axiom”. We then show, in Section 6.3.3, the equivalence of

Turing machines to the class of effective models.

6.3.1 Sequential procedures

Our axiomatization of a “sequential procedure” is very similar to that of

Gurevich’s sequential algorithm [24], with the following two main differences,

allowing for the computation of a specific function, rather than expressing

an abstract algorithm:

• The vocabulary includes special constants “In” and “Out”.

• Initial states are identical, except for changes in In.
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Structures The states of a procedure should be a full instantaneous de-

scription of all its relevant features. We represent them by (first order)

structures, using the standard notion of structure from mathematical logic.

For convenience, these structures will be algebras; that is, having purely

functional vocabulary (without relations).

Definition 97 (Structures).

• A domain D is a (nonempty) set of elements.

• A vocabulary F is a collection of function names, each with a fixed

finite arity.

• A term of vocabulary F is either a nullary function name (constant)

in F or takes the form f(t1, . . . , tk), where f is a function name in F

of positive arity k and t1, . . . , tk are terms.

• A structure S of vocabulary F is a domain D together with interpre-

tations [[f ]]S over D of the function names f ∈ F .

• A location of vocabulary F over a domain D is a pair, denoted f(a),

where f is a k-ary function name in F and a is a k-tuple of elements

of D. (If f is a constant, then a is the empty tuple.)

• The value of a location f(a) in a structure S, denoted [[f(a)]]S, is the

domain element [[f ]]S(a).

• It is often useful to indicate a location by a (ground) term f(t1, . . . , tk),

standing for f([[t1]]S , . . . , [[tk]]S).

• Structures S and S′ with vocabulary F sharing the same domain co-

incide over a set T of F-terms if [[t]]S = [[t]]S′ for all terms t ∈ T .

It is convenient to think of a structure S as a memory, or data-storage,

of a kind. For example, for storing an (infinite) two dimensional table of

integers, we need a structure S over the domain of integers, having a single

binary function name f in its vocabulary. Each entry of the table is a

location. The location has two indices, i and j, for its row and column in

the table, marked f(i, j). The content of an entry (location) in the table is

its value [[f(i, j)]]S .

Definition 98 (Update). An update of location l over domain D is a pair,

denoted l := v, where v is an element of D.
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Definition 99 (Structure Mapping). Let S be structure of vocabulary F

over domain D and ρ : D → D′ an injection from D to domain D′. A

mapping of S by ρ, denoted ρ(S), is a structure S′ of vocabulary F over D′,

such that ρ([[f(a)]]S) = [[f(ρ(a))]]S′ for every location f(a) in S.

Structures S and S′ of the same vocabulary over domains D and D′,

respectively, are isomorphic, denoted S ∼= S′, if there is a bijection π : D ↔

D′, such that S′ = π(S).

We are now in position to provide the three axioms of a sequential pro-

cedure.

Axiom 1 (Sequential Time). The procedure can be viewed as a collection S

of states, a sub-collection S0 ⊆ S of initial states, and a transition function

τ : S → S from state to state.

Axiom 2 (Abstract State).

• States. All states are first-order structures of the same finite vocabu-

lary F .

• Input. There are nullary function names In and Out in F . All initial

states (S0 ⊆ S) share a domain D, and are equal up to changes in

the value of In. (For convenience, the initial states can be referred to,

collectively, as S0.)

• Isomorphism Closure. The procedure states are closed under isomor-

phism. That is, if there is a state S ∈ S, and an isomorphism π via

which S is isomorphic to an F-structure S′, then S′ is also a state in

S.

• Isomorphism Preservation. The transition function preserves isomor-

phism. That is, if states S and S′ are isomorphic via π, then τ(S) and

τ(S′) are also isomorphic via π.

• Domain Preservation. The transition function preserves the domain.

That is, the domain of S and τ(S) is the same for every state S ∈ S.

Axiom 3 (Bounded Exploration). There exists a finite set T of “critical”

terms, such that ∆(S, τ(S)) = ∆(S′, τ(S′)) if S and S′ coincide over T , for

all states S, S′ ∈ S, where ∆(S, S′) = {l := v′ | [[l]]S 6= [[l]]S′ = v′} is a set

of updates turning S into S′.

The isomorphism constraints reflects the fact that we are working at a

fixed level of abstraction. See [24, p. 89]:
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A structure should be seen as a mere representation of its iso-

morphism type; only the isomorphism type matters. Hence the

first of the two statements: distinct isomorphic structures are

just different representations of the same isomorphic type, and

if one of them is a state of the given algorithm A, then the other

should be a state of A as well.

Domain preservation simply ensures that a specific “run” of the procedure

is over a specific domain. (Should it be necessary, one could always combine

many domains into one.) The bounded-exploration axiom ensures that the

behavior of the procedure is effective. This reflects the informal assumption

that the program of an algorithm can be given by a finite text [24, p. 90].

Definition 100 (Runs).

1. A run of procedure with transition function τ is a finite or infinite

sequence S0 ;τ S1 ;τ S2 ;τ · · · , where S0 is an initial state and

every Si+1 = τ(Si).

2. A run S0 ;τ S1 ;τ S2 ;τ · · · terminates if it is finite or if Si = Si+1

from some point on.

3. The terminating state of a terminating run S0 ;τ S1 ;τ S2 ;τ · · ·

is its last state if it is finite, or its stable state if it is infinite.

4. If there is a terminating run beginning with state S and terminating

in state S′, we write S ;
!
τ S

′.

Definition 101 (Procedure Extensionality). Let P be sequential procedure

over domain D. The extensionality of P , denoted [[P ]], is the partial function

f : D → D, such that f(x) = [[Out]]S′ whenever there’s a run S ;
!
τ S

′ with

[[In]]S = x, and is undefined otherwise.

Equality, Booleans and undefined. In contradistinction with Gure-

vich’s ASM’s, we do not have built in equality, Booleans, or undefined in

the definition of procedures. That is, a procedure need not have Boolean

values (True, False) or connectives (¬,∧,∨) pre-defined in its vocabulary;

rather, they may be defined like any other function. It also should not have

a special term for undefined values, though the value of the function im-

plemented by the procedure is not defined when its run doesn’t terminate.

The equality notion is also not presumed in the procedure’s initial state, as

it comprises infinite data. Nevertheless, since every domain element has a

unique construction, it follows that an effective procedure may implement
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the equality notion with only finite initial data. A detailed description of

this implementation is given in Section 6.3.4.3.

6.3.2 Effective models

A sequential procedure may be equipped with any oracle, given as an op-

eration of the initial state. Hence, the extensionality of such a procedure

might not be effective. As a result, we are interested only in sequential

procedures that use effective oracles. Since we are defining effectiveness, we

get an inductive definition, allowing initial states to include functions that

are the extensionality of effective procedures. The starting point must be

operations that are very simple and inherently effective. These basic oper-

ations must then be finite. We begin, then, with sequential procedures, in

which the initial state has finite data in addition to the domain view (“base

structure”). This constraint is formalized in Axiom 4, below.

Different procedures of the same computational model have some com-

mon mechanism. The level of shared configuration between the model’s

procedures may vary, but they must obviously share the same domain view.

Hence, we define an “effective model” to be some set of “effective proce-

dures” that share the same “base structure”.

We formalize the finiteness of the initial data by allowing the initial state

to contain an “almost-constant structure”.

Definition 102 (Almost-Constant Structure). A structure F is almost con-

stant if all but a finite number of locations have the same value.

Since we are heading for a characterization of effectiveness, the domain

over which the procedure actually operates should have countably many

elements, which have to be nameable. Hence, without loss of generality, one

may assume that naming is via terms.

Definition 103 (Base Structure). A structure S of finite vocabulary F over

a domain D is a base structure if every domain element is the value of a

unique F-term. That is, for every element e ∈ D there exists a unique

F-term t such that [[t]]S = e.

A base structure is isomorphic to the standard free term algebra (Her-

brand universe) of its vocabulary.

Proposition 104. Let S be a base structure over vocabulary G and domain

D, then:

• The vocabulary G has at least one nullary function.
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• The domain D is countable.

• Every domain element is the value of a unique location of S.

Example 105. A structure over the natural numbers with constant zero

and unary function successor, interpreted as the regular successor, is a base

structure.

Example 106. A structure over binary trees with constant nil and binary

function cons, interpreted as in Lisp, is a base structure.

For allowing the initial state to include both the domain view and the

initial data, we need to define the union-operation over structures:

Definition 107 (Structure Union). Let S′ and S′′ be two structures with

domain D and with vocabularies F ′ and F ′′, respectively. A structure S over

D is the union of S′ and S′′, denoted S = S′ ⊎ S′′, if its vocabulary is the

disjoint union F = F ′ ⊎ F ′′, and if [[l]]S = [[l]]S′ for locations l in S′ and

[[l]]S = [[l]]S′′ for locations in S′′.

We are now in position to formalize the fourth axiom, requiring the

effectiveness of the initial state. It is an inductive definition, allowing any

function that can be implemented by a (simpler) effective procedure.

Axiom 4 (Initial Data). The initial state consists of:

• a fixed base structure BS (the domain view);

• a fixed almost-constant AS structure (finite initial data); and

• a fixed effective structure ES over the base structure BS (effective or-

acles);

in addition to an input value In over BS that varies from initial state to ini-

tial state. That is, the initial state S0 is the union BS⊎AS⊎ES⊎ {In}, for

some base structure BS, almost-constant structure AS, and effective struc-

ture ES.

The effective structure contains finite many functions that are the ex-

tensionality of effective procedures over the same domain view (the effective

oracles). This allows the procedure to use an algorithm at any abstraction

level, as long as we can assure that the underlying oracles are effective.

The freedom to add any finite initial data is obvious, but why do we limit

the domain view to be isomorphic to a Herbrand universe? There are two

limitations here: (a) every domain element has a name (a closed term); and
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(b) the name of each element is unique. Were we to allow unnamed domain

elements, then a computation could not be referred to, nor repeated, hence

would not be effective. As for the uniqueness of the names, allowing a built-

in equality notion with an “infinite memory” of equal pairs is obviously non-

effective. Hence, the equality notion should be the result of some internal

mechanism, one that can be built up from scratch.

An effective procedure must satisfy Axioms 1–4.

Definition 108 (Effective Model). An effective model is a set of effective

procedures (objects satisfying Axioms 1–4) that share the same base struc-

ture.

To sum up:

Thesis B. All “effective” computational models are effective

models (per Definition 108).

Necessity. An effective procedure should satisfy, by our definitions, Ax-

ioms 1–4. In the beginning of the chapter we argued for the necessity of

the postulates from the intuitive point of view of effectiveness. Moreover,

omitting any of them allows for models that compute more than Turing

machines:

1. The Sequential Time Axiom is necessary if we wish to analyze com-

putation, which is a step-by-step process. Allowing for transfinite

computations, for example, would allow a model to precompute all

members of a recursively-enumerable set.

2. In the context of effective computation, there is no room for infini-

tary functions, for example. Without closure under isomorphism there

would be no value to the Bounded-Exploration Axiom, allowing the

assigning of any desired value to the Out location.

3. By omitting the Bounded-Exploration Axiom, a procedure need not

have any systematical behavior, hence may “compute” any function

by simply assigning the desired value at the Out location. That is,

for each initial state S there is a state S′, such that τ(S) = S′ and

[[Out]]S′ is the “desired” value.

4. Omitting the Initial-Data Axiom, one may “compute” any function

(e.g. a halting oracle), by simply having all its values in the initial state.

Such functions could also be encoded in equalities between locations,

were the initial data not (isomorphic to) a free term algebra.
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6.3.3 Effective equals computable

In the sense of our above definition of effectiveness (Definition 108) we have

that:

Theorem 109. Turing machines are an effective model.

Furthermore,

Theorem 110. Turing machines are at least as powerful as any effective

model. This is so by all three comparison notions. That is, TM & E and

TM % E and TM ' E for every model E satisfying the effectiveness axioms.

The proofs of Theorems 109 and 110 are somewhat lengthy, so are rel-

egated to Section 6.3.4. They make usage of Abstract State Machines,

which operate over arbitrary domains, and are based on Gurevich’s Ab-

stract State Machine Theorem [24], showing that sequential abstract state

machines (ASMs) capture sequential algorithms, defined axiomatically.

Definition 111 (Effective State Model). An ASM model satisfying the ini-

tial data restrictions is called an Effective State Model (or ESM).

This suggests the following variant thesis:

Thesis C. Every “effective” computational model is behaviorally

equivalent to an ESM.

Adopting the decent-power comparison notion (Definition 52), we get

a closer relationship between the three definitions of effectiveness (Theses

A–C): When considering only the extensionality of computational models

(that is, the set of functions that they compute) we have that the three

effectiveness criteria (Theses A–C) are equivalent.

Definition 112 (Extensionally Effective). A model A is extensionally ef-

fective if the set of functions that it computes may be represented by Turing-

computable functions. That is, if A - TM.

Theorem 113. A model A is extensionally effective if and only if there

exists an effective model B, such that [[A]] ⊆ [[B]].

Proof. If [[A]] ⊆ [[B]] for some effective model B, then obviously A - B, and

by Theorem 110 we also have that B - TM. Hence, A - TM.

As for the other direction, if A operates over a finite domain then its ex-

tensionality is obviously a subset of the extensionality of an effective model.
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Church-Turing

Thesis

A is extensionally effective

if it can be represented by

a set of

Turing-computable functions

A - TM

(Section 6.1)

Effectiveness

Axiomatization

A is extensionally effective

if it is co-extensive with

a model B satisfying

the effectiveness axioms

∃ effectiveB. [[A]] = [[B]]

(Section 6.3)

Effective

ASMs

A is extensionally effective

if it is co-extensive with

ASMs with

effective initial data

∃ESMB. [[A]] = [[B]]

(Section 6.3.4)

Theorem 110

Lemma 117

Lemma 118Theorem 109

Figure 6.1: Equivalent characterizations of extensional effectiveness of a

computational model over an arbitrary domain

Otherwise, since A - TM, it follows from Theorem 70 that there is a bijec-

tion π such that A /π TM. Hence, [[A]] ⊆ [[TM]]π. Since effective models

are closed under isomorphism, it follows that [[TM]]π is an effective model,

as required.

Thanks to Gurevich’s Abstract State Machines Theorem [24], we have

the analogous theorem with respect to ASMs:

Theorem 114. A model A is extensionally effective if and only if there is

an ESM B, such that [[A]] = [[B]].

The resulting relationship between the different characterizations of ef-

fectiveness is depicted in Figure 6.1.
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6.3.4 Proofs of two theorems

We provide here proofs of Theorems 109 and 110. First, we require some

additional definitions and lemmata.

6.3.4.1 Programmable machines

In Section 6.3.1, we axiomatized sequential procedures. To link these pro-

cedures with Turing machines, we define some mediators, named “program-

mable procedures,” along the lines of Gurevich’s Abstract State Machines

(ASMs) [24]. We then show that sequential procedures and programmable

procedures are equivalent (Lemma 117).

A “programmable procedure” is like a sequential procedure, with the

main difference that its transition function should be given by a finite “flat

program” rather than satisfy some constraints.

Definition 115 (Flat Program). A flat program P of vocabulary F has the

following syntax:

if x11
.
= y11 and x12

.
= y12 and . . . x1k1

.
= y1k1 then l1 := v1

if x21
.
= y21 and x22

.
= y22 and . . . x2k2

.
= y2k2 then l2 := v2

...

if xn1
.
= yn1 and xn2

.
= yn2 and . . . xnkn

.
= ynkn

then ln := vn
where each

.
= is either ‘=’ or ‘6=’, n, k1, . . . , kn ∈ N, and all the xij, yij, li,

and vi are F-terms.

Each line of the program is called a rule. The part of a rule between the

if and the then is the condition, li is its location, and vi is its value.

The activation of a flat program P on an F-structure S, denoted P (S),

is a set of updates {l := v | there is a rule in P , whose condition holds

(under the standard interpretation), with location l and value v}, or the

empty set if the above set includes two values for the same location.

Coding Style. To make flat programs more readable, let

% comment

if cond-1

stat-1

stat-2

else

stat-3

stand for
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if cond-1 then stat-1

if cond-1 then stat-2

if not cond-1 then stat-3

and, similarly, for other such abbreviations.

Definition 116 (Programmable Procedure). A programmable procedure is

composed of: F , In,Out, D,S,S0, and P , where all but the last component

is as in a sequential procedure (see Section 6.3.1), and P is a flat program

of F .

The run of a programmable procedure and its extensionality are defined

as for sequential procedures (Definitions 100 and 101), where the transition

function τ is given by τ(S) = S′ ∈ S such that ∆(S, S′) = P (S).

6.3.4.2 Sequential equals programmable

We show that every programmable procedure is sequential (satisfying the

three axioms), and every sequential procedure is programmable. This result

is derived directly from the main lemma of [24].

Lemma 117. Every programmable procedure is sequential. That is, let A be

a programmable procedure with states S and a flat program P , then there ex-

ists a sequential procedure B with the same elements of A, except for having a

transition function τ instead of the program P , such that ∆(S, τ(S)) = P (S)

for every S ∈ S.

Proof. Let A = 〈F , In,Out, D,S,S0, P 〉 be an arbitrary programmable pro-

cedure. Define the finite set of critical F-terms T to include all terms and

subterms of P . Define a transition function τ : S → S by τ(S) = S′ such

that ∆(S, S′) = P (S). To show that B = 〈F , In,Out, D,S,S0, τ〉 is a se-

quential procedure such that ∆(S, τ(S)) = P (S) for every S ∈ S it remains

to show that B satisfies the constraints defined for τ in a sequential pro-

cedure. Since the flat program P includes only terms in T (and does not

refer directly to domain elements), it obviously follows that τ satisfies the

isomorphism constraint. Since T includes all the terms of P , as well as the

subterms of the location-terms of P , it obviously follows that states that

coincide over T have the same set of updates by τ . Thus, τ satisfies the

bounded-exploration constraint.

Lemma 118. Every sequential procedure is programmable. That is, let B be

a sequential procedure with states S and a transition function τ , then there

exists a programmable procedure A with the same elements of B, except for
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having a flat program P instead of τ , such that ∆(S, τ(S)) = P (S) for every

S ∈ S.

This follows directly from Gurevich’s proof that for every sequential

algorithm there exists an equivalent sequential abstract state machine [24,

Lemma 6.11].

6.3.4.3 Effective equals computable

We prove now that Turing machines are of equivalent computational power

to all effective models.

Turing Machines are Effective. First, we show that the class of effective

procedures is at least as powerful as Turing machines, as the latter is an

effective model.

Proof (of Theorem 109). We consider Turing machines with two-way infi-

nite tapes. By way of example, let the tape alphabet be {0, 1}.

A Turing machine state (instantaneous description) contains three

things: Left, a finite string containing the tape section left of the read-

ing head; Right, a finite string with the tape section to the right to the read

head; and q, the internal state of the machine. The read head points to the

first character of Right.

Turing machines can be viewed as an effective model with the following

components:

Domain: The domain consists of all finite strings over 0, 1. That is the

domain D = {0, 1}∗.

Base structure: Constructors for the finite strings: the constant symbol

@ for the empty string (ε), and unary function symbols Con 0 and Con 1,

for concatenating 0 and 1, respectively, to the right of the string.

Almost-constant structure:

• Input and Output (nullary functions): In, Out. The value of In at the

initial state is the content of the tape, as a string over {0, 1}∗.

• Constants for the alphabet characters and TM-states (nullary): 0, 1,

q 0, q 1, . . . , q k. Their actual values are of no significance, as long as

they are all different.
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• Variables to keep the current status of the Turing machine (nullary):

Left, Right, and q. Their initial values are: Left = ε, Right = ε, and

q = q 0.

Effective structure:

• Functions to examine the tape (unary functions): Head and Tail.

Their initial values are as in the standard implementation of Head

and Tail. Their effective implementation is given below, after the de-

scription of the Turing machine model.

• The Boolean equality notion =. Note that the standard equality notion

contains infinite data, thus cannot be contained in the almost-constant

structure, nor in the base structure. Nevertheless, since every domain

element has a unique construction, the equality notion can be effec-

tively implemented with only finite initial data. This implementation

is explained after the implementation of Head and Tail.

Transition function: By Lemma 117, every programmable procedure is

a sequential procedure. Thus, a programmable procedure that satisfies the

initial-data postulate is an effective procedure. Every Turing machine is

an effective procedure with a flat program looking like this (% is used for

explanatory comments):

if q = q_0 % TM’s state q_0

if Head(Right) = 0

% write 1, move right, switch to q_3

Left := Con_1(Left)

Right := Tail(Right)

q := q_3

if Head(Right) = 1

% write 0, move left, switch to q_1

Left := Tail(Left)

Right := Con_0(Right)

q := q_1

if Right = @

% write 0, move left, switch to q_2

Left := Tail(Left)

Right := Con_0(Right)

q := q_2

if q = q_1 % TM’s state q_1

...

if q = q_k % the halting state

Out := Right
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In the above description of Turing machines as an effective model we’ve

used the functions Head and Tail. We show now their effectiveness.

The implementation sequentially enumerates all strings, assigning their

Head and Tail values, until encountering the input string. Note that it uses

the equality notion, which is shown to be effective afterwards.

It uses the same base structure and almost-constant structure described

above, with the addition of the following nullary functions (Name = ini-

tial value): New = ε, Backward = 0, Forward = 1, AddDigit = 0, and

Direction = ε.

% Sequentially constructing the Left variable

% until it equals to the input In, for filling

% the values of Head and Tail.

% The enumeration is: empty string, 0, 1, 00, 01, ...

if Left = In % Finished

Right := Left

Left := @

else % Keep enumerating

if Direction = New % default val

if Left = @ % @ -> 0

Left := Con_0(Left)

Head(Con_0(Left)) := 0

Tail(Con_0(Left)) := Left

if Head(Left) = 0 % e.g. 110 -> 111

Left := Con_1(Tail(Left))

Head(Con_1(Tail(Left)) := 1

Tail(Con_1(Tail(Left)) := Tail(Left)

if Head(Left) = 1 % 01->10; 11->000

Direction := Backward

Left := Tail(Left)

Right := Con_0(Right)

if Direction = Backward

if Left = @ % add rightmost digit

Direction := Forward

AddDigit := True

if Head(Left) = 0 % change to 1

Left := Con_1(Tail(Left))

Direction := Forward

if Head(Left) = 1 % keep backwards

Left := Tail(Left)

Right := Con_0(Right)

if Direction = Forward % Gather right 0s

if Right = @ % finished gathering

Direction := New
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if AddDigit = 1

Left := Con_0(Left)

Head(Con_0(Left)) := 0

Tail(Con_0(Left)) := Left

AddDigit = 0

else

Left := Con_0(Left)

Right := Tail(Right)

Head(Con_0(Left)) := 0

Tail(Con_0(Left)) := Left

The equality notion. The standard equality notion has infinite data,

thus cannot be given in the initial state. However, since the domain ele-

ments are uniquely constructed, it follows that it can be effectively imple-

mented using only finite initial data. The implementation scheme is quite

similar to the above implementation of Head and Tail. Initially, the value

of the equality function is ⊥ at all locations. The implementation sequen-

tially enumerates the strings, assigning True as the value of equality of each

string with itself and False for comparisons with all preceeding strings. This

continues until the process gives one of the defined values to the equality

operation applied to the inputs.

Effective procedures are computable. Next, we show that all effective

models are equal to or weaker than Turing machines by mapping every

effective model to a while-like computer program (CP). The computer

program may be of any programming language known to be of equivalent

power to Turing machines, as long as it operates over the natural numbers

and includes the syntax and semantics of flat programs.

Lemma 119. Every infinite base structure S of vocabulary F over a domain

D is isomorphic to a computable structure S′ of the same vocabulary over

N. That is, there is a bijection π : D ↔ N such that for every location f(a)

of S we have that [[f(a)]]S = π−1([[f(π(a))]]S′).

Proof. Let S be a base structure of vocabulary F over a domain D. Let

T be the domain of all F-terms, and S̃ the standard free term algebra

(structure) of F . Since all structure functions are total, it follows that

every F-term has a value in D, and by Proposition 104, every element

e ∈ D is the value of a unique F-term. Therefore, there is bijection

ϕ : D ↔ T , such that ϕ−1(t) = [[t]]S for every t ∈ T . Hence, S and

S̃ are isomorphic via ϕ. Since F is finite, it follows that its set of terms

T is recursive. Define a computable enumeration η : T ↔ N. Define a
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structure S′ of vocabulary F over N by the following computable recursion:

[[f(n1, . . . , nk)]]S′ = η(f(η−1(n1), . . . , η
−1(nk))). That is, for computing the

value of a function f on a tuple n the program should recursively find the

terms of n, and then compute the enumeration of the combined term. By

the construction of S′ we have that S′ and S̃ are isomorphic via η. Hence,

S′ and S are isomorphic via ϕ ◦ η.

Lemma 120. Computer programs (CP) are bijectively at least as powerful

as any effective model.

Proof. We show that for every effective model E over domain D there is a

bijection π : D → N such that CP 'π E.

When the effective model E has a finite base structure, then the com-

putability is obvious due to the finite number of possible procedures. We

consider then the infinite case; let E be an effective model over a domain

D with an infinite base structure BS . By Lemma 119 there is a bijection

π : D ↔ N, such that the structure BS ′ := π(BS ) is computable. Let PBS

be a computer program implementing BS ′. For each effective procedure

e ∈ E, let ASe be its almost-constant structure. Since ASe is almost con-

stant, it follows that AS′
e := π(ASe) is computable; let PASe be a computer

program implementing AS′
e. Analogously, we have by induction a computer

program PESe implementing the effective structure of e. By Lemma 118,

the transition function of every effective procedure e ∈ E can be defined by

a flat program Pe. For every effective procedure e ∈ E, define a computer

program P ′
e = PBS ∪ Pe ∪ PASe ∪ PESe . Since BS′ = π(BS), AS′

e = π(ASe)

and ES′
e = π(ESe), it follows that [[P ′

e]] = π([[e]]). Therefore, there is a

bijection π : D ↔ N, such that for every effective procedure e ∈ E there is

a computer program P ′
e ∈ CP such that [[P ′

e]] = π([[e]]). Hence, CP ' E.

We are now in position to prove that Turing machines are at least as

powerful as any effective model.

Proof (of Theorem 110). By Lemma 120, computer programs (CP) are bi-

jectively at least as powerful as any effective model, while Turing machines

(TM) are bijectively power equivalent to computer programs. (There are

standard bijections between Σ∗ and N.)
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Chapter 7

Discussion

Key points. In this thesis, we have explored various aspects of the in-

fluence of domain interpretations on the extensionality of computational

models, and suggested how we believe they should be handled. Some of the

key points are:

• The extensionality of computational models is a very interesting set

(of functions) – it varies from “fluid” sets for which containment does

not mean more power, as with ordinary sets, to explicit, complete, sets

for which nothing can be added without additional power.

• Get to know your model: Is it interpretation-stable or interpretation-

complete?

• Compare computational power properly.

• Turing machines and the recursive functions are shown to be robust,

this time from the representation/interpretation point of view.

• Effectiveness does not apply to a single function; it is a set of functions,

or of a function together with its domain constructors, that may be

deemed effective.

Domain Representation. One might think that our study is a part of

the “domain representation” research area. This is not the case.

Indeed, the basic concept of “representation” is the same: one set of

elements is represented by a subset of another set. Nevertheless, the is-

sues studied are very different. The area of domain representation concerns

mapping of some (possibly topological/metric) sets into domains (partially

ordered sets with some properties), and studies the (topological/metric)

properties preserved via the mappings.
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For example, in [4], a “topological space” is represented by a “domain”

via a “quotient map”. A topological space is a set together with a collection

of its open subsets. A domain is a partially ordered set satisfying some prop-

erties as a least element, a least upper bound to every two elements, etc. . . .

A domain may be equipped with some topology, normally a Scott topology.

A quotient map is a continuous function between topological spaces that

obeys some rules of open-set preservation.

Further research. A central issue, yet to be understood, is the relation

between the internal mechanism of a computational model and its exten-

sional properties of interpretation-completeness and interpretation-stability.

With the recursive functions, this relation is apparent, shown in the proof

of their interpretation-completeness. However, we do not know how to re-

late, in general, the completeness or stability of a computational model

to its internal mechanism. Another related question is whether there is

some standard, well known, computational model that is not interpretation-

stable. Specifically, we do not know yet whether the primitive recursive are

interpretation-stable.
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