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Abstract. Weighted automata are widely researched, but with a vari-
ety of different semantics, which mostly fit into either the “quantitative
view” or the “algebraic view”. We argue that the two views result with
incomparable automata families, each providing a different conceptual
generalization of Boolean automata and having different natural exten-
sions.

We propose to term the former “quantitative automata” and the latter
“weighted automata”.

In both views, transitions are labeled with weights and the value of a
path of transitions is given by some value function on the traversed
weights. However, the main conceptual difference is in the generalization
of nondeterminism and its dual (universality, in alternating automata).

Quantitative automata keep the preference meaning of choice and obli-
gation to nondeterminism and universality, interpreted as supremum and
infimum, respectively, and accordingly restrict weights and value func-
tions to the totally ordered domain of real numbers.

Weighted automata, on the other hand, generalize nondeterminism to
an arbitrary commutative operation (of a semiring or valuation monoid),
and generally have no interpretation of universality. The weights and
value functions can be from arbitrary domains.

On several aspects the algebraic view generalizes the quantitative one,
allowing for richer weight domains and interpretations of nondetermin-
ism, whereas on different aspects the quantitative view is more general,
having alternation, inherent compatibility with games and adequacy to
approximations.

We argue that clarifying the conceptual difference between the two au-
tomata families can enlighten their possible future extensions.

Keywords: Quantitative automata · Weighted automata · Nondeter-
minism · Alternation · Games · Logic.
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1 Introduction

A bit of history.

1959 Nondeterministic automata (on finite words) introduced by Michael Ra-
bin and Dana Scott [65].

1961 Weighted automata (with integer weights on finite words) introduced by
Marcel-Paul Schützenberger [67].

1962 Automata on infinite words introduced by Julius Richard Büchi [19].

1963 Probabilistic automata (on finite words) introduced by Michael Rabin [64].

1970s Weighted automata over semirings (on finite words) have evolved (e.g.,
[40, 66]).

1976 Alternating automata introduced by Ashok Chandra, Dexter Kozen and
Larry Stockmeyer [22, 21].

2000s Weighted automata over semirings on infinite words have evolved (e.g.,
[30, 35, 39]).

2008 Quantitative automata, as we refer to them, introduced by Krishnendu
Chatterjee, Laurent Doyen, and Thomas Henzinger [23–25].

2010 Weighted automata over valuation monoids introduced by Manfred
Droste and Ingmar Meinecke [36, 37].

Along the years:

– The various automata types were generalized to operate not only on words,
but also on trees, graphs, and other structures.

– Counter automata of various types have evolved, which are inherently dif-
ferent from quantitative and weighted automata in the sense that in counter
automata the counter value along a run can allow or forbid certain transi-
tions.

– Automata were shown to be closely related to other entities and especially
to logic and games, in both the Boolean and weighted settings.

– Automata on infinite words proved very useful in verification and synthesis.
– Alternation was shown to be particularly related to logic and games, and

also proved very useful in verification.

The relations between quantitative and weighted automata.

The main conceptual difference between quantitative and weighted automata is
in the interpretation of nondeterminism and its dual (universality). Quantitative
automata keep their preference meaning with choice and obligation, respectively,
thus considering weights and value functions over the totally ordered domain of
real numbers. Weighted automata, on the other hand, allow for an arbitrary com-
mutative interpretation of nondeterminism and generally have no interpretation
of universality.
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Quantitative automata usually have no acceptance condition, which is gener-
alized by the numerical value of the automaton on the input. Weighted automata
generally do have a Boolean acceptance condition, and only the values of accept-
ing runs are considered by the commutative operation.

The automata families are formally defined in Section 2 and their relations
are illustrated in Fig. 1.

Nondeterministic Quantitative Auto.

Alternating Quantitative Auto.

Semiring
Weighted Auto.

Totally-complete
Semiring

Weighted Auto.

Valuation-monoid
Weighted Auto.

ω-Valuation-monoid
Weighted Auto.

On
Finite words

On
Infinite words

Quantitative Automata

Weighted Automata

1 2

3
4

5 6

7 8

9 10

Fig. 1. Quantitative and weighted automata relations. Examples of some automata
types that belong to the different (intersection of) automata families, as marked by the
circled numbers, are given below.

For a quantitative automaton, one may first consider whether it is nondeter-
ministic, universal, or alternating, and then consider its specific type, which is
determined by its value function—a function Val from finite or infinite sequences
of real numbers to a real number, defining how to value a path of transition
weights. For example, an alternating discounted-sum automaton.

For a weighted automaton, one needs to first consider which subfamily it
belongs to, depending on the algebraic restrictions on the function

∏
to value

a path of transition weights and the function
∑

to aggregate the values of the
accepting paths on an input word. The most common subfamily is of semiring
weighted automata, operating on finite words and requiring

∏
and

∑
to corre-

spond to the ⊗ and ⊕ operations of a semiring. For automata on infinite words,
one needs to restrict the semiring to a totally-complete semiring, which properly
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extends
∏

and
∑

to infinite sequences and sets. In order to extend weighted au-
tomata to allow for the value functions that are used by quantitative automata,
one needs to replace semirings with the more liberal valuation monoid for finite
words and ω-valuation monoid for infinite words.

Example of automata types in the different (intersection of) automata families.
The numbers below correspond to the circled numbers in Fig. 1. Some of the
value functions, semirings, and valuation monoids mentioned in the examples are
formally defined in Section 2. For 4 and 8 , requiring a commutative operation
on infinitely many elements that is different from supremum and infimum, we
are not aware of many natural examples in the literature.

1,2. The intersection of [totally-complete] semiring weighted automata and non-
deterministic quantitative automata restricts the former to interpret ⊕ as
max (and

∑
as supremum) and the latter to use value functions (which take

the role of
∏

in the semiring) that distribute over supremum. On finite words
( 1 in Fig. 1), it includes various common automata types, among which are
Boolean finite automata (NFAs) and Sum-automata, which are the same as
tropical/arctic/max-plus automata. On infinite words ( 2 ), there are fewer
examples, among which are Sup automata.

3,4. [Totally-complete] semiring weighted automata that are not quantitative au-
tomata interpret the ⊕ and

∑
operations differently from max/min and

supremum/infimum. For finite words ( 3 ), there are many interesting exam-
ples, such as weighted automata over the log semiring.

5,6. Nondeterministic quantitative automata that are not [totally-complete] semir-
ing weighted automata use value functions that do not distribute over max/
supremum. There are many such examples, among which are Avg automata
on finite words and LimInfAvg automata on infinite words.

7,8. [ω-]valuation-monoid weighted automata that are not [totally-complete] semir-
ing weighted automata and not quantitative automata interpret the ⊕ and∑

operations differently from max/min and supremum/infimum, and their
value functions do not distribute over

∑
. On finite words ( 7 ), one can take

for example the domain of weights to be {0, 1}, use the value function Avg,
and interpret ⊕ as multiplication.

9,10. All alternating quantitative automata that indeed use alternation (namely,
automata that do not have only nondeterministic or universal transitions)
are not [ω-]valuation-monoid weighted automata.

Terminology mismatch in the literature. The usage in the literature of “weighted
automata” to different automata families can often be confusing. Some papers
on “weighted automata” are specific to the tropical/arctic semiring (which is in
1 of Fig. 1), for example [20, 6, 3]; some speak of quantitative automata, for
example [24, 27]; and a significant segment of them refer to semiring weighted
automata on finite words. There are also cases of using “quantitative automata”
when referring to the algebraic view, for example [8].



Quantitative vs. Weighted Automata 5

Different conceptual views leading to different extensions.

As a result of the conceptual differences between the two automata families, they
are naturally related to and extended with different notions and entities.

In particular, quantitative automata, which incorporate preference and the
dual roles of nondeterminism and universality, naturally relate to two-player
turn-based zero-sum games and to formal verification and synthesis, and allow
for approximations with respect to standard distance functions over the real
numbers.

Weighted automata, on the other hand, having an algebraic structure and a
flexible interpretation of nondeterminism, are naturally related to various alge-
braic areas and have established equivalences with monadic second order logic.

In Section 3 we elaborate on several such notions and entities that are dif-
ferently related to each of the automata families, and put forward possible ex-
tensions of the relations with the “less related” family.

We believe that understanding the conceptual difference between the two
automata families (and making a terminological distinction between them) can
help clarity, and furthermore enlighten the possible future extensions of each
family, taking inspiration from natural extensions of the other family.

2 Definitions of Quantitative and Weighted Automata

We start with defining transition-labeled automata1, and then extend them sep-
arately to quantitative automata and to weighted automata.

Remark 1. We describe automata on finite or infinite words, while both quanti-
tative and weighted automata have orthogonal generalizations to more involved
input structures, such as trees, graphs, and pictures. Likewise, we speak of au-
tomata with a single weight on each transition, while both automata families
have natural extensions that allow for multiple weights on each transition.

Nondeterministic and alternating transition-labeled automata.

A nondeterministic transition-labeled automaton is a tuple A = (Σ,Q, I, δ),
where Σ is an alphabet set; Q is a finite nonempty set of states; I ⊆ Q is a set
of initial states; and δ : Q × Σ → 2W×Q is a transition function, where W is a
set of labels.

A transition is a tuple (q, σ, x, q′) ∈ Q×Σ ×W ×Q, also written q
σ:x−−→ q′.

(Note that there might be several transitions with different weights over the

1 We define first an automaton without an acceptance-condition/value-function/semi-
ring/valuation-monoid, but with initial state(s). Usually, the term ‘automaton’ refers
to an entity with them, while ‘semiautomaton’ to an entity that also lacks initial
state(s).
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same letter between the same pair of states2.) We write γ(t) = x for the weight
of a transition t = (q, σ, x, q′).

A run (or path) of the automaton on a word w is a sequence π of transitions
that starts in an initial state and respects the transition function; that is π =

t0, t1, t2, . . ., such that t0 = q
w[0]:x−−−−→ q′ for a transition t0 ∈ δ and q ∈ I, and

for every i > 0, we have ti−1 = q
w[i−1]:x−−−−−→ q′ and ti = q′

w[i]:x−−−→ q′′, such that
ti−1, ti ∈ δ.

A nondeterministic automaton is deterministic if its set of initial states is a
singleton and its transition function maps every state and letter to a singleton
(a weight-state pair).

An alternating transition-labeled automaton is also a tuple A = (Σ,Q, ι, δ),
where Σ and Q are as in the nondeterministic case, ι ∈ Q is an initial state3,
and δ : Q×Σ → B+(R×Q) is a transition function, where B+(R×Q) is the set
of positive Boolean formulas (transition conditions) over weight-state pairs.

A transition is as in the nondeterministic case a tuple (q, σ, x, q′) ∈ Q×Σ×R×
Q. (A transition condition generally yields many transitions.)

A run of the automaton on a word w is intuitively a play between Adam
and Eve in a game denoted by GA(w)4. It starts in the initial state ι, and in
each round, when the automaton is in state q and the next letter of w is σ, Eve
resolves the nondeterminism (disjunctions) of the transition condition δ(q, σ) and

Adam resolves its universality (conjunctions), yielding a transition q
σ:x−−→ q′. The

output of a play is thus a path π = t0t1t2 . . . of transitions.
A nondeterministic (resp. universal) automaton is a special case of an al-

ternating automaton, in which all transition conditions are disjunctions (resp.
conjunctions).

A nondeterministic/alternating automaton is complete if for every state q ∈
Q and letter σ ∈ Σ, there is at least one transition q

σ:x−−→ q′ to some state q′.

2.1 Quantitative Automata

A quantitative automaton is defined with respect to a value function Val : R∗ →
R or Val : Rω → R. It is then called a nondeterministic/alternating Val automa-
ton (e.g., a nondeterministic discounted-sum automaton).

Examples of common value functions over sequences of real values. 5

For finite sequences v = v0v1 . . . vn−1:

2 This extra flexibility of allowing for “parallel” transitions with different weights is
often omitted, since it is redundant for some value functions while important for
others.

3 Nondeterministic automata are also often defined with a single initial state.
4 An equivalent definition goes via trees instead of games.
5 There are value functions that are more naturally defined over sequences of tu-

ples of real values (see Remark 1), for example lexicographic-mean-payoff [9] and
discounted-summation with multiple discount factors [13].
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– Sum(v) =

n−1∑
i=0

vi – Avg(v) =
1

n

n−1∑
i=0

vi – Prod(v) =

n−1∏
i=0

vi

For finite and infinite sequences v = v0v1 . . .:

– Inf(v) = inf{vn | n ≥ 0} – Sup(v) = sup{vn | n ≥ 0}

– For a discount factor λ ∈ Q ∩ (0, 1), λDSum(v) =
∑
i≥0

λivi

For infinite sequences v = v0v1 . . .:

– LimInf(v) = lim
n→∞

inf{vi | i ≥ n}

– LimInfAvg(v) = LimInf

(
1

n

n−1∑
i=0

vi

) – LimSup(v) = lim
n→∞

sup{vi | i ≥ n}

– LimSupAvg(v) = LimSup

(
1

n

n−1∑
i=0

vi

)

(LimInfAvg and LimSupAvg are also called MeanPayoff and MeanPayoff.)

A nondeterministic quantitative automaton is a complete nondeterministic
transition-labeled automaton with labels of real numbers6 and some value func-
tion Val.

The value of a run π is Val(γ(π)). The value of A on a word w is the supre-
mum7 of Val(π) over all runs π of A on w.

An alternating quantitative automaton is a complete alternating transition-
labeled automaton with labels of real numbers and some value function Val.

The value ofA on a word w is determined by the gameGA(w), which becomes
a Val game: the value of a play (which is a path π of transitions) is Val(γ(π));
Eve wants to maximize it and Adam wants to minimize it. When this game is
determined, which is guaranteed for the considered value functions, the value of
A on w is the value of GA(w).

Two automata A and A′ are equivalent, denoted by A ≡ A′, if they realize
the same function8.

2.2 Weighted Automata

A weighted automaton is defined with respect to a semiring or more generally
with respect to an [ω-]valuation monoid9.

A semiring is a structure (D,⊕,⊗, 0, 1), where (D,⊕, 0) is a commutative
monoid, (D,⊗, 1) is a monoid, multiplication distributes over addition, and for
every x ∈ D, 0⊗ x = x⊗ 0 = 0.

6 Considering algorithmic aspects of quantitative automata, labels are usually rational
numbers, concretely represented.

7 It is sometimes defined analogously with infimum instead of supremum. Considering
alternating quantitative automata, infimum relates to universal transitions.

8 A function in this context is called in [23] a “quantitative language”.
9 Automata with multiple weights on transitions can be defined with respect to struc-

ture monoids [38].
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A semiring is complete if (D,⊕, 0) is a complete monoid (namely, equipped
with a

∑
operation that properly extends ⊕ to infinite sets of elements), and

it is totally complete if it is also equipped with a
∏

operation that properly
extends ⊗ to infinite sequences of elements, while preserving distributivity over
addition [39, 59].

Examples of common semirings.

– The Boolean ({0, 1},∨,∧, 0, 1)
– The tropical (also known as min-plus) (N ∪ {∞},min,+,∞, 0)
– The arctic (also known as max-plus) (N ∪ {−∞},max,+,−∞, 0)
– The natural numbers (N,+, ·, 0, 1) with the usual addition and multiplication
– The log semiring (R ∪ {−∞,+∞},⊕,+,−∞, 0) with x⊕ y = log(ex + ey)

A valuation monoid is a tuple (D,⊕, 0,Val), where (D,⊕, 0) is a commutative
monoid and Val : D∗ → D is a function10. An ω-valuation monoid is defined
analogously, while requiring that ⊕ is properly extended to

∑
over infinite sets

of elements, and having Val : Dω → D.

Examples of common [ω-]valuation monoids.

– A semiring, taking its product ⊗ to be the valuation function Val.
– (R ∪ {−∞}, sup,−∞,Val), where Val is some value function as appears in

Section 2.1 with a corresponding extension to R ∪ {−∞}.

A weighted automaton on finite words (resp. infinite words) is a transition-
labeled nondeterministic automaton together with a Boolean acceptance condi-
tion11 and a semiring or a valuation-monoid (resp. a totally complete semiring
or an ω-valuation-monoid).

A run is accepting if it satisfies the acceptance condition12.
The value of an accepting run π is

∏
γ(π) with respect to a semiring and

Val(γ(π)) with respect to an [ω-]valuation monoid.
The value of A on a word w is the semiring’s/[ω-]valuation-monoid’s sum-

mation (
∑

) of w’s accepting-runs values or 0 if there are no accepting runs.
Two automata A and A′ are equivalent, denoted by A ≡ A′, if they realize

the same function13.

10 In [37], the original definition of a valuation monoid has additional restrictions that
are loosened in [47].

11 Semiring weighted automata are sometimes defined with an acceptance condition
(e.g., [47]) and sometimes without it, while having instead labels on both transitions
and states (e.g., [33]). However, considering infinite words or valuation monoids,
weighted automata have an acceptance condition [37].

12 For finite words, the acceptance condition is a set F ⊆ Q of final states, and a
run satisfies it if it ends in a final state. For infinite words there are many accep-
tance conditions, such as Büchi or Muller. (More details on the different acceptance
conditions can be found, for example, in [12]).

13 A function in this context is often viewed as a formal power series.
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3 Related Notions and Entities

Automata are closely related to many notions and entities in computer science.
We briefly look into how quantitative automata and weighted automata are,
often differently, related to some of them, and how to possibly extend each such
relation with respect to the “less related” automata family.

3.1 Alternation

Since alternating automata were introduced in [22, 21], they were extended to
many models (e.g., [55, 31]) over various input structures (e.g., [62, 57, 58]), and
shown to be closely related to logic and to games (e.g., [58, 74]), very useful in
formal verification (e.g., [72, 31]), and in general to play a key role in automata
theory.

Quantitative automata are naturally generalized from nondeterminism to
alternation, having the dual roles of choice for nondeterminism and obligation
for universality, and alternating quantitative automata are often more expressive
than nondeterministic ones and allow for better closure properties [24]. (The title
of [24] speaks of “weighted automata”, but relates to quantitative automata.)

Considering weighted automata, on either a semirings or [ω-]valuation monoids,
there is no natural interpretation of alternation, as nondeterminism is interpreted
by a general commutative operation ⊕, which need not have a dual.

The ⊗ or Val functions that are used for valuing a path of transitions have an
orthogonal role, and are not generally adequate for the ‘universality role’. Yet,
in some settings it is interesting to look into an interpretation of an alternating
weighted automaton, in which ⊗ takes this role, as is done in [4] with respect to
the tropical semiring and in [53] with respect to commutative semirings.

It may possibly be interesting to look into extensions of semirings and valu-
ation monoids, as suggested in [53], that add another operator to take the role
of universality.

It may also be interesting to look into restrictions of semirings and valuation
monoids for which the ⊕ operation has a meaningful syntactic dual.

3.2 Games

Two-player turn-based win-lose games are closely related to logic and to Boolean
automata, especially to alternating Boolean automata. For example, deciding
the winner of an infinite game over an arena A is the same as deciding whether
A, seen as a one-letter alternating automaton with a corresponding acceptance
condition, is empty. Other examples are good-for-games automata [50, 15] (see
Section 3.4), which are useful in solving games [50, 29], and the interplay between
automata and games in formal verification and synthesis (see Section 3.6).

Analogously, two-player turn-based zero-sum games, which generalize win-
lose games by having (possibly infinitely) many values to plays, and in which
Eve wants to maximize the play’s value and Adam wants to minimize it, are
closely related to quantitative automata.
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In particular, the above example of viewing a game as a special case of an
alternating automaton over a singleton alphabet generalizes to the quantitative
setting—the value of the game, which is the value that Eve can guarantee against
any strategy of Adam, is the value of the automaton on the single input word.
Along the same lines, the other examples above are also naturally generalized to
the quantitative setting (e.g., [32, 49, 5, 45, 16])14.

Weighted automata are connected to games via their connection to logics (see
Section 3.3), which are connected to Ehrenfeucht-Fräıssé games. However, we are
not aware of works that directly connect between general weighted automata and
games.

3.3 Logic

Automata theory has evolved from logic and remained very related to it. In
particular, Büchi, Elgot and Trakhtenbrot established the equivalence of (ω-
regular complete) automata and monadic second order (MSO) logic (of order)
on words [41, 71, 19], while a series of results provided the equivalence of counter-
free (aperiodic) automata and both first order logic (FOL) and linear temporal
logic (LTL) on finite and infinite words [68, 52, 61, 56, 69, 46, 70, 63] (see a detailed
exploration of the latter in [48]).

The result on the equivalence of Boolean automata and MSO was extended
by Manfred Droste and Paul Gastin to the equivalence of semiring weighted au-
tomata on finite words and a restricted version of a weighted MSO logic that they
defined [33]. This result was then further extended to totally-complete semiring
weighted automata on infinite words [39], to [ω-]valuation monoid weighted au-
tomata on finite and infinite words [37], and to various extensions of weighted au-
tomata on various input structures, each corresponding to a variant of weighted
MSO. In [47], there is a unifying framework for the equivalence of weighted
automata and weighted MSO on finite words.

The result on the equivalence of aperiodic Boolean automata and first-order
logic was extended by Droste and Gastin to the equivalence of aperiodic poly-
nomially ambiguous weighted automata on finite words and weighted FOL [34].

As for the connection of quantitative automata and logic, there are vari-
ous extensions of temporal logic with value functions Val that are related to
Val automata, for example [60, 10, 1, 17]. However, we are not aware of general
equivalence theorems as in the case of weighted automata.

It may be interesting to look into adaptations of weighted MSO that are
equivalent to nondeterministic and alternating quantitative automata, as well
as on adaptations of weighted FOL that are equivalent to their aperiodic coun-
terparts. Another interesting direction, in particular for formal verification (see
Section 2.2), is to establish equivalence between quantitative automata and some
weighted temporal logics.

14 The “weighted automata” in the title of [49] refer to a variant of Sum automata,
defined over infinite words with an acceptance condition on finite prefixes.
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3.4 Between determinism and nondeterminism

In general, deterministic automata have better compositional properties than
nondeterministic automata, making them better suited for applications such as
synthesis and probabilistic model checking. Yet, deterministic automata are often
exponentially bigger than equivalent nondeterministic automata and sometimes
lack in expressive power.

This unpleasant trade-off between determinism and nondeterminism moti-
vates formalisms that are in between them, aiming at enjoying, sometimes, the
best of both worlds.

Dominant such formalisms are unambiguity, determinism in the limit (semi-
determinism), history determinism [28], and good for gameness [50].

A Boolean automaton is unambiguous if there is at most one accepting run on
each word; it is deterministic in the limit (for Büchi automata) if its continuation
from every accepting state is deterministic; it is history deterministic if there is
a strategy to resolve its nondeterminism by only considering the prefix of the
word read so far (and getting an equivalent automaton); and it is good for games
if its product with every game G whose winning condition is the automaton’s
language provides a game with the same winner as of G.

Unambiguity and determinism-in-the-limit are defined, as is, on weighted
automata, based on their acceptance conditions. Observe that unambiguous
weighted automata do not need the ⊕ operation, as there is at most one accept-
ing run. Hence, the notion is relevant also to quantitative automata if adding
an acceptance condition, which can also relate to a threshold (see Section 3.6
for threshold quantitative automata). For example, requiring at most one run
on each word whose value is equal to or bigger than a threshold.

Unambiguity can also be generalized with respect to weighted automata
(with no ⊕ operation) or quantitative automata (with acceptance conditions
) by means of functional automata [43]—rather than having at most one ac-
cepting run on each word, all accepting runs on a word should have the same
value.

History-determinism and good-for-gameness have natural generalizations to
quantitative automata, due to the choice interpretation of nondeterminism. The
definition of history determinism follows as is [28, 16], while good-for-gameness
relates to zero-sum games rather than to win-lose games [16]. Interestingly, while
history determinism and good for gameness are equivalent for Boolean automata
[15], they are not equivalent for quantitative automata [16].

Though history-determinism and good-for-gameness look less natural for
weighted automata, it might be interesting to analyze such notions. History
determinism is technically defined also for a weighted automaton with an arbi-
trary ⊕ operation (requiring a strategy to generate for every word w a single
run with the value of the automaton on w), though possibly not very meaningful
for a general weighted automaton. As for good for gameness, it might be that
certain types of games are adequate to an interesting product with weighted
automata.
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3.5 Approximations

Quantitative automata, having real values for words, naturally allow for ap-
proximations with respect to standard distance functions. Accordingly, there
are many works on approximated solutions with quantitative automata (some
of them have “weighted automata” in the title), either with respect to a spe-
cific distance function, such as difference (e.g., [11, 51, 44]) or ratio15 (e.g., [6,
7]), or with respect to a general distance function d that respects the order on
R, namely having that for every x ≤ y ≤ z ∈ R, we have d(x, y) ≤ d(x, z) and
d(y, z) ≤ d(x, z) (e.g., [14]).

These approximated solutions provide a significant added value to the gen-
eralization of Boolean automata to quantitative automata, as often an exact
solution is impossible or computationally very difficult.

Considering weighted automata, once the domain of values is arbitrary, there
is a problem to consider meaningful distance functions. However, restricting the
domain to R, or to some other set with meaningful distance functions, allows for
analogous approximated solutions.

3.6 Formal Verification and Synthesis

Verification (model checking) asks whether a given system satisfies a given spec-
ification, and synthesis asks to automatically generate a system that satisfies a
given specification.

Verification and synthesis are traditionally Boolean, having a yes-no value
to both the system properties (such as whether or not the system ‘serves only
coffee’) and to the satisfaction level of the specification (for example, ‘yes’ if the
system satisfies the specification of ‘serving only coffee’ or ‘serving only tea’).

This Boolean perspective falls short of many verification needs of contempo-
rary systems, concerning performance, robustness, and resource-constraint re-
quirements. One system is often preferred over another, even though they are
both correct, since one is, for example, faster than the other, or, if they are both
incorrect, one misbehaves less frequently than the other.

As a result, recent years have seen the emergence and rapid development of
quantitative formal verification and synthesis in an attempt to cope with these
needs (e.g., [2, 10, 32, 26, 42, 9, 18, 5, 51, 45]).

According to this approach, both the system properties and the satisfaction
values are no longer Boolean. For example, a property of a system can be an
‘average response time’, and the system can get a satisfaction level of 0.7 to a
specification that quantitatively combines requirements on the ‘average response
time’ and the ‘power consumption’.

Automata and game theory play a key role in verification and synthesis of
reactive systems (see, e.g., [73, 54]) and both quantitative and weighted automata
are valuable in generalizing them to the quantitative setting.

15 As ratio does not satisfy the triangle inequality, it is formally not a distance function,
and one may speak instead of d(x, y) = | log x− log y|.
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Considering the generalization of the satisfaction level, quantitative automata
are more natural, as satisfaction evaluates to a value from an ordered domain,
and we want the system to get a value as high as possible. In this context,
and others, it is also common to consider threshold quantitative automata, which
return a yes-no answer for whether the value of the automaton on an input word
is equal to or bigger than a threshold. This provides the flexibility of playing
back and forth between Boolean and quantitative satisfaction values.

Also for synthesis, which is viewed as a two-player game between the en-
vironment, generating the inputs to the system, and the system, interactively
responding to these inputs, quantitative automata are more natural (see Sec-
tion 3.2).

As for generalization of system properties, both quantitative and weighted
automata are suitable, as such properties might have very general aspects.
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45. Filiot, E., Löding, C., Winter, S.: Synthesis from weighted specifications with par-
tial domains over finite words. In: Saxena, N., Simon, S. (eds.) FSTTCS. LIPIcs,
vol. 182, pp. 46:1–46:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

46. Gabbay, D.M., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness.
In: Proc. of POPL. pp. 163–173 (1980)

47. Gastin, P., Monmege, B.: A unifying survey on weighted logics and weighted au-
tomata - core weighted logic: minimal and versatile specification of quantitative
properties. Soft Comput. 22(4), 1047–1065 (2018)

48. and Paul Gastin, V.D.: A combinatorial approach to the theory of omega-
automata. Inf. Control. 48(3), 261–283 (1981)

49. Halava, V., Harju, T., Niskanen, R., Potapov, I.: Weighted automata on infinite
words in the context of attacker-defender games. In: Proc. of CIE. Lecture Notes
in Computer Science, vol. 9136, pp. 206–215. Springer (2015)

50. Henzinger, T., Piterman, N.: Solving games without determinization. In: Proc. of
CSLl. pp. 395–410 (2006)
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