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Abstract
Different types of automata over words and trees offer different trade-offs between expressivity,
conciseness, and the complexity of decision procedures. Alternating weak automata enjoy simple
algorithms for emptiness and membership checks, which makes transformations into automata
of this type particularly interesting. For instance, an algorithm for solving two-player infinite
games can be viewed as a special case of such a transformation. However, our understanding
of the worst-case size blow-up that these transformations can incur is rather poor. This paper
establishes two new results, one on word automata and one on tree automata. We show that:

Alternating parity word automata can be turned into alternating weak automata of quasi-
polynomial (rather than exponential) size.
Universal co-Büchi tree automata, a special case of alternating parity tree automata, can be
exponentially more concise than alternating weak automata.

Along the way, we present a family of game languages, strict for the levels of the weak hierarchy
of tree automata, which corresponds to a weak version of the canonical game languages known
to be strict for the Mostowski–Rabin index hierarchy.
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1 Introduction

The interplay between games and automata has been proven fruitful for both game- and
automata-theory. In particular, solving two-player infinite games of some winning condition,
such as Büchi or parity, reduces to transforming an alternating word automaton with the
same acceptance condition into an alternating weak automaton: i) solving a game over an
arena A is the same as deciding whether A, seen as a one-letter alternating automaton, is
empty; and ii) deciding the emptiness of one-letter alternating weak automata can be done
in linear time. The simplicity of weak automata stems from their defining property, the lack
of cycles with both accepting and rejecting states.

As a result, the time complexity of solving games is intimately connected to the size
blow-up of translating alternating automata to alternating weak automata. Note, however,
that the automata-translation question is more general, since automata need not be defined
over a one-letter alphabet, and often a binary, or larger, alphabet adds substantial complexity.

Nevertheless, until recently, the best known algorithms for the two problems, with respect
to the Büchi and parity conditions, were the same. For Büchi, they involved a quadratic time
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or size blow-up, and for parity an exponential one [13, 12]. Moreover, some competitive tools
for solving parity games are based on the translation from parity to weak automata [23].

About a year ago the picture changed; After many years of incremental progress, two quasi-
polynomial algorithms using different techniques for solving parity games were published [5, 8].
So far this breakthrough has not extended to automata-translation.

Recently, a third quasi-polynomial algorithm for solving parity games was published,
employing yet another technique [14]. We extend this algorithm for addressing the more
general problem, and provide a translation of alternating parity word automata into weak
automata that involves only a quasi-polynomial size blow-up.

K. Lehtinen defines in [14] register games, which are a parameterised variant of parity
games, and bases the new algorithm on them. A central result in the complexity analysis of
this algorithm is that Eve wins a parity game with n positions if and only if she wins the
corresponding k-register game for every k > logn. The least such k is called the register-index
of the game. We extend this result, showing that the register-index is also logarithmic in
a more refined measure of game size: the maximal number of distinct strongly connected
components in it. We call this measure the ssc-size of the game.

We link the automata setting to the game setting by defining for every alternating parity
word automaton A and positive integer k, a parameterised alternating parity word automaton
Ak, such that Ak accepts an ultimately periodic word w if and only if Eve wins the k-register
game on the arena of the model-checking game over A and w. When A has n states, Ak
has knO(k) states and O(k) priorities. Using our logarithmic bound of k in the scc-size of
games, we show that A and Ak are equivalent for k > logn. Then, applying the standard
O(md) transformation into weak automata [12] (where m is the number of states in the
automaton and d the number of its priorities) to A1+logn rather than to the original A, we
get a translation with a quasi-polynomial blow-up.

For tree automata, the picture is very different. While every alternating parity word
automaton can be translated into a weak one, this is not the case with tree automata. In fact
there is a strict expressiveness hierarchy of parity tree automata, defined by the automaton’s
index, that is, the number of its priorities [4]. It is known as the Mostowski–Rabin hierarchy
in the automata-theoretic literature, and as the alternation hierarchy in the µ-calculus
literature. The decidability of whether a given language is expressible in some level of the
hierarchy, and specifically by an alternating weak automaton, is open. Here we show that
even when a language is recognised by an alternating weak automaton, this automaton may
be exponentially larger than an equivalent parity, or even a co-Büchi automaton.

Analogously to the parity hierarchy, there is a hierarchy of weak automata, defined by the
number of alternations between accepting and rejecting states. Like the Mostowski–Rabin
hierarchy, it also collapses in the word setting [16, 9] and is infinite in the tree setting [19, 21].
So far, its strictness has only been shown for ranked (directed/ordered) trees.

In ranked trees, each child of a node is distinguished by its unique direction – left and
right for binary trees. In unranked (undirected/unordered) trees, which are more common
when talking of Kripke structures, and modal or temporal logics, this is not the case. An
unranked tree automaton (also known as a symmetric tree automaton) can only require that
there exists a child (♦) with some property and that all children (�) have some property. It
thus cannot recognise properties such as “there are two distinct children that satisfy p”.

We extend the proof of the strictness of the weak hierarchy to alternating automata that
run on unranked trees. Our proof combines the technique used for ranked trees in [21] and a
weak version of the languages known to be strict for the parity hierarchy [7, 3]. We show
that the language of unranked trees that represent co-Büchi games in which Eve wins with a
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strategy that sees at most n alternations between accepting and rejecting positions is only
recognised by alternating weak automata of level at least n in the hierarchy.

We use the strictness of the weak hierarchy as an intermediate step in showing that there
is at least an exponential size blow-up in translating a universal co-Büchi tree automaton into
an alternating weak one. We define a language of unranked trees recognised by an automaton
of the former type of size in O(n), and show that it is strict for the (n+ 1)2n level of the
weak hierarchy. This language combines the aforementioned language of trees representing
games in which Eve wins in a restricted way, and explicit counting with n binary bits.

The lower bound we present on unranked tree automata also holds for ranked tree
automata: the tree languages we work with can easily be translated into languages of ranked
binary trees, and the automata that we construct, or argue that do not exist, can be adapted
accordingly. Indeed, the trees we build in the proofs are already binary; and the automata
that operate on them can be turned into automata on ranked binary trees by transforming
�q in transition conditions into (left, q) ∧ (right, q) and ♦q into (left, q) ∨ (right, q).

Related Work. Over words, the best known upper bound for the size blow-up involved
in translating alternating parity to alternating weak automata is exponential [12]. The
known lower bound, Ω(n logn), is the lower bound for translating alternating Büchi into
weak automata [13]. It is directly linked to the 2Ω(n logn) lower bound in determinizing
nondeterministic Büchi automata [18]. How to use the power of the parity condition and the
limitations of alternation (as opposed to concurrency) to get a better lower bound is open.

Over trees, little is known about the decidability of the weak definability of languages
recognised by alternating parity automata. It is known that the intersection of Büchi and
co-Büchi definable languages is weakly definable [11]. Weak definability is decidable for tree
languages recognised by alternating Büchi automata, as was first shown for ranked trees
by Colcombet et al [6] via reduction to cost automata. Skrzypczak and Walukiewicz [22]
provide a topological characterisation and exponential decision procedure, which was later
extended to unranked trees [15]. It seems that a singly-exponential translation of universal
co-Büchi to alternating weak tree automata can be extracted from these procedures to match
our lower bound; however it is a non trivial procedure that is yet to be verified.

Due to space constraints, some of the proofs are omitted and appear in the appendix.

2 Preliminaries

Alphabets, words, and trees. An alphabet is an arbitrary finite and nonempty set, usually
denoted by Σ. We also use two specific alphabets: ΣG = {E0, A0, E1, A1}, to which we refer
as the game alphabet and ΣB = {0, 1, $}, to which we refer as the binary-counting alphabet.

A word over Σ is a (possibly infinite) sequence w = w0 · w1 · · · of letters in Σ. We write
suffixes(w) for the set of suffixes of w (which includes w itself). We consider a tree to be an
unranked infinite rooted tree in the graph-theoretic sense. A Σ-tree is a tree together with a
mapping of each of its nodes to a letter in Σ.

For a word or tree language L over an alphabet Σ, we denote by L its complement,
namely the set of words over Σ or Σ-labeled trees that are not in L.

For natural numbers i and j, we write [i..j] for the set of natural numbers between them,
including i and j. For a set Q, we denote by B+(Q) the set of positive boolean formulas over
the atomic propositions Q ∪ {true, false}.

Automata. Several definitions of alternating tree automata exist. The differences relate to
how flexible the transition condition is with respect to ε-transitions and the combination of
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path quantifiers (♦,�) and boolean connectives (∨,∧). Usually, all of these definitions give
the same expressiveness ([24, Proposition 1] and [10, Remark 9.4]), except for the case of
very restricted automata, in which they do not [2]. In our definition of alternating automata,
there are no epsilon transitions and path quantifiers are applied directly on states.

An alternating tree automaton is a tuple 〈Σ, Q, ι, δ,Ω〉 where Σ is a finite alphabet, Q is
a finite set of states, ι ∈ Q is the initial state, δ : Q× Σ→ B+({♦,�} ×Q) is the transition
function, and Ω is the acceptance condition, on which we further elaborate below.

Intuitively, given a state q ∈ Q and a letter σ ∈ Σ, the transition function returns a
positive boolean formula that defines which states the automaton should transition to, and
whether to consider the next state at one non-deterministically chosen child (♦), or at all of
the children (�). Positive boolean formulas over {♦,�} ×Q are called transition conditions.

Formally, a run of an automaton with states Q over a Σ-tree t is a (Q× Σ)-tree r that
assigns states to nodes of t along the transition function of A. That is, there is a binary
relation ρ that relates nodes of t and nodes of r and satisfies the following constraints.

For every pair (n, n′) ∈ ρ, n is a node of t, n′ is a node of r, and if n is labeled σ then n′
is labeled (·, σ). (The · stands for an arbitrary value.) For every node n′ of r, there is
exactly one node n of t, such that (n, n′) ∈ ρ.
The roots of t and of r appear in exactly one pair, together, and r’s root is labeled (ι, ·).
For a node n of t with parent p, and a node n′ of r with parent p′, if (n, n′) ∈ ρ then
(p, p′) ∈ ρ.
Consider a node n of t, and a node n′ of r labeled (q, σ), such that (n, n′) ∈ ρ. Let
Φ = δ(q, σ) be the transition condition of the state q over the letter σ. Then Φ should be
satisfied by ρ as inductively defined below.

If Φ = ♦h then there exists a child c of n and a child c′ of n′, such that (c, c′) ∈ ρ and
c′ is labeled (h, ·).
If Φ = �h then for every child c of n, there is a child c′ of n′, such that (c, c′) ∈ ρ and
c′ is labeled (h, ·).
If Φ = b1 ∨ b2 (resp. Φ = b1 ∧ b2), for transition conditions b1 and b2, then b1 or b2
(resp. b1 and b2) should be satisfied.

A run is accepting if each of its paths satisfies the acceptance condition Ω or ends with
true. There exist various acceptance conditions in the literature; We use the following.

Büchi (resp. co-Büchi), where Ω ⊆ Q is the set of accepting states, and a path is accepting
if some state (resp. all states) that it visits infinitely often are in Ω.
A Büchi (and a co-Büchi) automaton is weak if every strongly connected component in
the transition graph consists of either only accepting states or only rejecting states.
Parity, where Ω : Q→ I is a priority function that assigns to each state a priority from a
set I = [0..i] or I = [1..i], for some i ∈ N. A path is accepting if the maximal priority
seen infinitely often in it is even.

Note that the weak condition is a special case of both the Büchi and co-Büchi conditions,
which are dual and are both special cases of the parity condition.

An automaton A accepts a tree if it has an accepting run on it; the language that it
recognises, denoted by L(A), is the set of trees that it accepts. Two automata that recognise
the same language are equivalent.

The size of an automaton is the maximum of the alphabet length, the number of states,
the number of subformulas in the transition function, and the acceptance condition’s index,
which is 1 for Büchi and co-Büchi, and |I| for parity. Observe that in alternating automata,
the difference between the size of an automaton and the number of states in it can stem
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from a transition function that has exponentially many subformulas. (In stronger acceptance
conditions, not considered here, the index might also be exponential in the number of states.)

Nondeterminism in tree automata also varies in the literature. In general, it only concerns
the boolean connectives of the transition condition and not the path quantifiers (or directions,
in ranked trees). We consider an alternating automaton to be nondeterministic (resp.
universal) if its transition conditions only use the ∨ (resp. ∧) connective, in addition to the
path quantifiers ♦ and �.

Word automata are defined exactly as tree automata, without the path quantifiers ♦ and
�. Accordingly, a run of a word automaton is a sequence of states.

The class of an automaton characterises its transition mode (deterministic, nondetermin-
istic, or alternating), its acceptance condition, and whether it runs on words or trees. We
often abbreviate automata classes by acronyms in {D, N, A}× {W, B, C, P}× {W, T}. The
first letter stands for the transition mode; the second for the acceptance-condition (weak,
Büchi, co-Büchi, and parity); and the third indicates whether the automaton runs on Words
or on Trees. For example, AWW stands for an alternating weak automaton on words.

It is known that AWWs recognise all ω-regular word languages [16], while AWTs do not:
they have the same expressiveness as alternation-free µ-calculus (AFMC) [20].

Games. A parity game is an infinite-duration path-forming game, played between Eve and her
opponent Adam on a game graph G = 〈V, Ve, Va, E,Ω〉 called the arena. The positions V of
the arena are partitioned into those belonging to Eve, Ve, and those belonging to Adam, Va.
We assume that every position has at least one successor. The priority assignment Ω→ I

maps every position to a priority in I, a finite prefix of the non-negative integers. Starting
at some position of G, a play proceeds with the owner of the current position choosing the
next position among its successors in the directed edge relation E ⊆ V × V . The players
collaboratively form a play, consisting of an infinite path along the edges of the game graph.
Eve wins if the highest priority visited infinitely often is even, and Adam wins if it is odd.

A co-Büchi game is a parity game, in which the set of priorities is I = {0, 1}. (The
positions with priority 0 are accepting and those with priority 1 are rejecting.)

We shall view a ΣG-tree t also as a co-Büchi game, where nodes labelled Ei and Ai, for
i ∈ {0, 1}, are interpreted as Eve’s and Adam’s positions respectively, and have priority i. If
not stated differently, we assume that the game starts at the root of t.

A (positional) strategy σ for a player P ∈ {Adam,Eve} maps every position v belonging
to P to one of its successors σ(v). A play π = v0v1 . . . is said to agree with σ when for all i,
if vi belongs to P , then vi+1 is σ(vi). A strategy σ for player P is said to be winning for P
from a region W ⊆ V if all plays starting within W that agree with σ are winning for P .

I Proposition 1 (Positional determinacy [7]). Parity games are positionally determined: at
each position, either Adam or Eve has a positional winning strategy.

I Definition 2 (Model-checking game). Given a word w ∈ Σω and an APW A = 〈Σ, Q, ι, δ,Ω〉,
the model-checking game G(w,A) is the following parity game:

Positions are B+(Q)× suffixes(w).
For a ∈ Σ, u ∈ Σω and transition conditions b and b′, there is an edge from:

(b ∧ b′, u) to (b, u) and (b′, u)
(q, au) to (δ(q, a), u)
(true, au) to (true, u)

(b ∨ b′, u) to (b, u) and (b′, u)

(false, au) to (false, u).

Positions (b ∧ b′, u) belong to Adam, other positions belong to Eve.
A position (b, u) is of priority Ω(b) if b is a state, 1 if b = false, and 0 otherwise.
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Note that for ultimately periodic words w, the game G(w,A) has finitely many positions.

I Proposition 3. An APW A with initial state ι accepts a word w if and only if Eve has a
winning strategy in the model-checking game G(w,A) from (ι, w).

3 The Weak Hierarchy

A weak automaton can be categorised by the maximal number of alternations3 between
accepting and rejecting states in it [19]. This is a strict hierarchy over ranked trees [19, 21],
whereas over words it collapses [16, 9]. We clarify the level to which it collapses over words,
and extend the strictness result to the setting of unranked trees. We will use this hierarchy
to show the lower bound for translating alternating parity to alternating weak tree automata.

Formally, to define its level, we consider a weak automaton as a parity automaton in
which whenever a state q is reachable from a state q′, Ω(q) ≤ Ω(q′), i.e. the parities seen on
any path of the automaton are non-increasing. In such parity automata, there are no cycles
with both an even and an odd priority, and therefore all even priorities can be replaced with
0 and odd priorities with 1. This definition therefore coincides with the definition of a weak
automaton as a special case of a Büchi or co-Büchi automaton, as given in Section 2, by
interpreting states of even priority as accepting and odd priority as rejecting. Then, for every
n ∈ N, a (0, n)-AWT (resp. (1, n + 1)-AWT) is a weak automaton with priorities (ranks)
within [0..n] (resp. [1..n+ 1]). Notice that every AWT can also have transitions to true and
false, which “do not count” in the ranking

The classes of (0, n)- and (1, n+ 1)-AWTs form the weak hierarchy. Notice that for every
n ∈ N, an automaton is a (0, n)-AWT iff its dual is a (1, n + 1)-AWT, and the class of
(1, n+ 1)-AWTs is contained in the class of (0, n+ 1)-AWTs.

The weak hierarchy over words is defined analogously for AWWs rather than AWTs.

3.1 Word Automata: Collapse of the Hierarchy
AWWs recognise all ω-regular word languages: there is a translation of deterministic Muller
word automata into AWWs A [16]. A close look at the construction reveals that A is in the
(1, 3) class. We now show that this is the first class that recognises all ω-regular languages.

I Theorem 4. Every ω-regular word language is recognised by some (0, 2)-AWW, and there
are ω-regular word languages not recognised by any (0, 1)-AWW.

One direction follows from the translation in [16]; for the other direction we show that the
Büchi condition, i.e. the language of words with infinitely many repetitions of a fixed letter,
is not recognised by any (0, 1)-AWW.

3.2 Tree Automata: Strict Hierarchy for Ranked and Unranked Trees
We extend the result on the strictness of the weak hierarchy to the setting of unranked trees.
Our proof combines the technique used for ranked trees in [21] and a weak version of the
cannonical example of a family of languages known to exhaust the parity hierarchy [7, 3].

For n ∈ N, let Winn be the language of trees over the game alphabet ΣG in which, when
viewed as co-Büchi games, Eve wins with up to n alternations between 0 and 1 nodes. That

3 This sort of “alternation” has nothing to do with the “alternation” of alternating automata, which refers
to having both nondeterminism and universality in the transition condition.
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is, Eve has a winning strategy σ, such that every path of the tree that agrees with σ has up
to n transitions from a node labeled Ex/Ax to a node labeled Ey/Ay, for x 6= y ∈ {0, 1}.

We start with the positive direction, showing that Winn is recognised by a (0, n)-AWT.
The (0, n)-AWT is simply the standard automaton to recognise a winning strategy for Eve,
duplicated to count alternations.

I Lemma 5. For every n ∈ N, Winn is recognised by a (0, n)-AWT.

We continue with the negative direction, showing that the complement of Winn is not
recognised by a (0, n)-AWT.

I Lemma 6. For every n ∈ N, Winn is not recognised by a (0, n)-AWT.

The proof consists of an induction on n. For the inductive case we assume, towards a
contradiction, that a (0, n + 1)-AWT A recognises Winn+1. The key to this proof is that
when n+ 1 is odd, there must be some depth after which an accepting run does not visit
states of priority n. We can then use states of lower priority to build a (0, n)-AWT that
recognises Winn, reaching a contradiction. For odd n, we look at the dual (1, n+ 2)-AWT in
which n+ 2 is odd and follow the analogous reasoning.

I Theorem 7. The weak hierarchy is strict for alternating weak tree automata over unranked
trees. That is, for every integer n, there is a language of unranked trees that is recognised by
a (0, n+ 1)-AWT and not by any (0, n)-AWT.

Proof. The family of languages Winn fits the bill. By Lemma 5, for every n ∈ N, Winn is
recognised by a (0, n)-AWT, implying that Winn is recognised by a (1, n+ 1)-AWT, which is
in particular a (0, n+ 1)-AWT. By Lemma 6, Winn is not recognised by any (0, n)-AWT. J

4 From Alternating Parity to Alternating Weak Word Automata

We present a quasi-polynomial transformation from APW to AWW, based on the idea of
register games [14]. These were developed as an automata-theoretic method for solving parity
games in quasi-polynomial time; here we show that this approach is more general and can be
used to turn APW into AWW with a quasi-polynomial state and size blow-up.

Register games are a parameterised variant of parity games, also played on a parity game
arena. We define for any APW A an APW Ak that accepts an ultimately periodic word w if
and only if Eve wins the k-register game on the arena of the model-checking game G(w,A).
When A has n states, Ak has O(knk+1) states and 2k + 1 priorities. We then show that A
and Ak are equivalent for k = 1 + logn. Then, applying the standard O(md) transformation
into weak automata [12], where m is the number of states in the automaton and d the
number of priorities in it, however to A1+logn rather than to A, we get a translation with a
quasi-polynomial blow-up.

A similar line of reasoning does not work on trees because the register-index of the model-
checking game between a tree and an APT depends on both the tree and the automaton.

I Definition 8 (Register game [14]). For a strictly positive integer k, a k-register game
consists of a normal parity game, augmented with k registers. Each register records the
highest priority that has occurred in the parity game since it was last reset. The registers are
ranked according to how long it has been since their last reset, with a newly reset register
having rank 1. Eve is given control of the registers: Before every move in the parity game,
Eve can choose to reset a register of any rank r. If the register contains the priority p, this
produces output 2r if p is even and 2r+ 1 otherwise. As long as Eve resets registers infinitely
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often, this produces an infinite sequence in [1..2k + 1]ω. To win, Eve has to produce an
infinite sequence of outputs such that the maximal value output infinitely often is even. A
play in a register game can begin at any position and register configuration (even having
registers with an integer bigger than the maximal priority of the parity game); Note that the
initial register configuration does not affect the number of registers needed. Unless stated
otherwise, we assume all the registers to be initialised to 0.

We call a k-tuple x̄ of priorities a register configuration, where xi is the content of the
register of rank i. The top register is the register of rank k.

I Definition 9 (Register-index [14]). The register-index of a parity game G from a position
v is the least k such that Eve wins either both the k-register game and the parity game
on G from v or both the k-register game and the parity game on the dual of G from v

(i.e. priorities are shifted by 1 and node ownership is inverted). The register-index always
exists [14]. The register-index of a region W winning for Eve is the least k such that Eve
wins the k-register game from any position in W . The register-index of G is the maximal
register-index over all its positions.

We now define for every APW A its parameterised version Ak, which is an APW that
will be shown to accept a word w if and only if Eve wins the k-register game on G(w,A)
starting from (ι, w). The idea is to emulate the k-register game by keeping track of register
configurations with a tuple x̄ ∈ Ik that is updated according to which priorities are seen and
Eve’s resetting choices, which are represented as nondeterministic choices in Ak. The outputs
from resets are captured by the priorities of the states of Ak. Here we note a slight subtlety:
In the k-register game on G(w,A), Eve can reset not only at positions (q, u) where q is a
state of A, but also at positions (b, u) where b is a boolean formula. In Ak we aggregate
the outputs from all resets between two states (by taking the largest among them) into the
priority of the next state – this is the third element p ∈ [1..2k+ 1] of the states of Ak. When
Eve does not reset, we use the priority 1 so that if Eve does not reset infinitely often, she
loses the game, as required.

I Definition 10. Given an APW A = 〈Σ, Q, ι, δ,Ω〉 with Ω : Q→ I and a strictly positive
integer k, we define an APW Ak = 〈Σ, Q′, ι′, δ′,Ω′〉 as follows:

Q′ = Q× Ik × [1..2k + 1]
ι′ = (ι, (0, .., 0), 1)
Ω′: For every q ∈ Q, x̄ ∈ Ik, and p ∈ [1..2k + 1], we have Ω′(q, x̄, p) = p.
δ′: For every q ∈ Q, ȳ ∈ Ik, p ∈ [1..2k + 1], and a ∈ Σ, we have δ′((q, ȳ, p), a) =
move(δ(q, a), ȳ, 1)∨ reset(δ(q, a), ȳ, 1), where for every q′ ∈ Q, x̄ ∈ Ik, p′ ∈ [1..2k+ 1], and
transition conditions b and b′:

move(q′, x̄, p′) = (q′, x̄′, p′), with x′i = max(xi,Ω(q′)).
move(b ∧ b′, x̄, p′) = (move(b, x̄, p′) ∨ reset(b, x̄, p′)) ∧ (move(b′, x̄, p′) ∨ reset(b′, x̄, p′))
move(b ∨ b′, x̄, p′) = (move(b, x̄, p′) ∨ reset(b, x̄, p′)) ∨ (move(b′, x̄, p′) ∨ reset(b′, x̄, p′))
reset(b, x̄, p′) =

∨
i∈[1..k] reseti(b, x̄, p′), where reseti(b, x̄, p′) = move(b, x̄′, p′′) with

∗ x′j = xj for j > i; x′j = xj−1 for j ≤ i, j > 1; x′1 = 0
∗ p′′ is max(2i, p′) if xi is even; and max(2i+ 1, p′) otherwise.

I Lemma 11. Given an APW A, the APW Ak accepts a word w if and only if Eve wins
the k-register game on G(w,A) from (ι, w).

The register-index of a parity game G is logarithmically bounded in the number of
positions in G [14]. However, the number of positions of G(w,A) depend on both w and
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A. We introduce a new measure of game size that we use to logarithmically bound the
register-index, but which in G(w,A) only depends on A.

I Definition 12. For a game G, let SG be a maximal set of distinct (not necessarily maximal)
strongly connected components in G. Call the size of SG the scc-size of G.

The proof that the register-index of a game is logarithmic in its scc-size is similar to the
proof that it is logarithmic in the number of positions of the game [14], while strengthening it
by showing that: i) every game of scc-size 1 has register-index 1, and ii) as the register-index
increases, the scc-size, rather than just the number of positions, has to double.

We use slightly stronger strategies for Eve: instead of just winning, we require her not to
reset the top register when it contains an odd priority. This allows us to compose strategies.

I Definition 13 (Defensive register-index [14]). A winning strategy for Eve in a register game
on G is defensive if, whenever the strategy is played from a position in the winning region of
G and a register-configuration in which the top register contains an even priority no smaller
than the largest priority in G, the play never outputs 2k + 1.

The defensive register-index of a winning region for Eve of a parity game is the lowest
integer k such that Eve has a defensive winning strategy. Observe that the defensive
register-index is trivially at most one larger than the register-index.

The proof that the defensive register-index is logarithmic in the scc-size is different for
arbitrary scc-size and scc-size 1; we consider the two cases separately.

I Lemma 14. A parity game with scc-size 1 has defensive register-index 1.

Proof sketch. We prove by induction on the number of positions in an arena G that Eve has
a defensive strategy in the 1-register game on G, such that if the initial value of the register
is 0 then a play that agrees with the strategy outputs only 2’s. The base case is trivial.

In the induction step, we consider the maximal strongly connected components consisting
of vertices with priority smaller than the maximal priority p. Observe that there is up to one
such component, denoted by Gs. If it does not exist, Eve’s strategy is to reset whenever p is
seen. If Gs does exist, Eve’s strategy is to reset the register whenever entering Gs, and within
Gs to follow the strategy that is guaranteed by the induction assumption. The correctness
builds on the fact that in an arena with scc-size 1, all cycles intersect. J

I Lemma 15. The register-index k of a parity game of scc-size z is at most 1 + log z.

Proof. From the definition of register-index, it suffices to consider the single-player parity
games G induced by any winning strategy for Eve in her winning region. Observe that in
the register games on G, Eve’s strategy consists of just choosing when to reset registers.

We proceed by induction on the number of positions n in G. The base case, n = 1, is
trivial. For the inductive step, let G′ be the game induced by positions of G of priority
up to p− 2, where p is the maximal even priority that appears in some cycle of G. Then,
let G1, . . . , Gj be the maximal strongly connected subgames of G′. Let k1, . . . , kj be their
respective defensive register-indices, and km the maximal among these. If there are no such
subgames, then all cycles in G contain p in which case Eve wins defensively the 1-register
game on G by resetting whenever p is seen.

Case of a unique i for which ki = km, and km > 1: We show that the register-index of
G is no more than km. Since the scc-size of G is at least that of Gi, and using the
induction hypothesis, this suffices.
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Eve’s strategy in the km-register game on G is as follows: she first resets any odd priorities
in the registers (this may take several turns); then, after this clean-up phase, she resets
km whenever p occurs; within a subgame Gj she uses the bottom ranking kj registers to
simulate her defensive winning strategy in the kj-register game on Gj .
Assume that this strategy is played from a register-configuration where the top register
contains an even priority no smaller than p. First observe that since km > 1, after
seeing p and resetting km, the top register still contains an even value no smaller than
p. Furthermore, since this strategy encounters p between any two entrances into Gi, it
always enters Gi with an even value no smaller than p in the top register. Thus, it never
outputs 2km + 1. It leaves Adam the choice of losing within a subgame Gj (where Eve
follows a winning strategy) or changing subgames infinitely often. In the latter case, p
is seen infinitely often, thus producing 2km as output infinitely often. It is therefore
winning and defensive for Eve.
If it is played from a register-configuration in which the top register is not an even priority
no smaller than p, then it might output 2km + 1, but the values output infinitely often
will still be the same as above, so the strategy is still winning and defensive.

Case of i, j where i 6= j and ki = kj = km: We show that the register-index of G is no
more than km + 1. This suffices, since by the induction hypothesis, each of Gi and Gj
has scc-size at least 2km−1; then G has scc-size at least 2km .
Eve’s strategy in the km + 1-register game on G is as follows: reset the register of rank
km + 1 whenever p is seen; in a subgame Gi, use the bottom ranking ki registers to
simulate a winning strategy in the ki-register game on G. As above, this strategy is
winning, and since it only resets the register of rank km + 1 after seeing p, it is defensive.

Case of km = 1: If the scc-size of G is 1 then the result follows from Lemma 14. Otherwise,
Eve can win the 2-register game on G, using a strategy as above: within a subgame,
she uses her defensive 1-register strategy, and resets the top register whenever p is seen.
This strategy is winning since a play either remains in a subgame and follows a winning
strategy, or sees p infinitely often and therefore outputs 4 infinitely often, but does not
output 5 infinitely often. It is therefore winning. If initially the top register contains an
even priority no smaller than p, this strategy never outputs 5 and is therefore defensive.

J

We now show that the scc-size of G(w,A), for an ultimately periodic word w, is independent
of w and logarithmic in A. It basically follows from Lemma 15 and the fact that w is
represented by a Kripke structure with a single cycle.

I Lemma 16. Given an ultimately periodic word w = ucω and an APW A with n states,
the parity game G(w,A) has register-index at most 1 + logn.

Then A is equivalent to its 1 + logn parameterised version; the main result follows by
applying the existing transformation – exponential in the number of priorities – to A1+logn.

I Lemma 17. Every APW A is equivalent to its parameterised version Ak, for k = 1 + logn.

I Theorem 18. The size blow-up and state blow-up involved in translating alternating parity
word automata to alternating weak word automata is at most quasi-polynomial. In particular,
every APW A of size (resp. number of states ) n is equivalent to an AWW of size (resp.
number of states) 2O((logn)3).
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5 From Universal Co-Büchi to Alternating Weak Tree Automata

As opposed to the word setting, alternating weak tree automata do not recognise all ω-
regular tree languages. Furthermore, we show below that in cases that a translation from
an alternating parity automaton, or even a universal co-Büchi automaton, is possible, there
might be an exponential size blow-up.

We provide a family {Ln}n≥1 of tree languages, such that Ln is only recognised by an
AWT with at least 2n states, while recognised by a UCT of size in O(n).

The languages Ln are defined over the game alphabet combined with the binary-counting
alphabet. Intuitively, a tree t belongs to Ln if Eve wins the co-Büchi game with respect to
the game alphabet, and every path of t provides a correct prefix of an n-bit binary counter,
with respect to the binary-counting alphabet, when only considering nodes that come right
after an alternation between E0/A0 and E1/A1 labelling. Notice that the latter requirement
guarantees that there are up to (n+ 1)2n such alternations in every path of t. (There are up
to 2n numbers in an n-bit counter, and with the separator $ every number takes n+ 1 bits.)

Formally, Ln is the language of (ΣG × ΣB)-labeled trees, such that a tree t is in Ln iff it
satisfies the following properties:
I. Considering only the ΣG labelling of t and viewing the tree as a co-Büchi game, Eve wins.
II. The ΣG-labelling of t’s root is E0 or A0.
III. For a string π over Σ, a node of π is in the derived string π′ if it is labeled by Ex/Ax and

its predecessor is labeled by Ey/Ay for x 6= y. Then, for every path π of t, the derived
string π′, when considering only its ΣB labelling, should be a correct prefix of an n-bit
binary counter, where each n bits of 0/1 are separated by $. For example, 000$001$01 is
a correct prefix, while 000$100 and 000$ . . . $111$000 are not.

Intuitively, i) Ln is recognised by a small UCT that combines three succinct components,
each checking one of the three requirements in the definition of Ln; ii) Ln is AWT-recognizable,
since the third requirement guarantees boundedly many alternations between accepting and
rejecting states; and iii) Ln is only recognised by an AWT with at least (n + 1)2n states,
since Ln will be shown to be in that level of the weak alternation hierarchy.

I Lemma 19. For every n ∈ N, Ln is recognised by a UCT of size in O(n).

Proof. A UCT for Ln can be defined as the conjunction of three UCTs, AI , AII , and AIII ,
each checking the corresponding requirement in the definition of Ln.

AI . The UCT AI can be defined by straightforwardly relating E0 and E1 to accepting and
rejecting nondeterministic states, respectively, and A0 and A1 to accepting and rejecting
universal states, respectively. Formally, AI = 〈Σ, QI , ιI , δI , αI〉, where

QI = {q0, q1}.
ιI = q0.
δI . For every q ∈ Q and b ∈ ΣB, we define: δI(q, (E0, b)) = ♦q0; δI(q, (E1, b)) = ♦q1;
δI(q, (A0, b)) = �q0; and δI(q, (A1, b)) = �q1.
αI = q0.

A winning strategy of Eve on a game-tree t suggests how to resolve the nondeterminism in
AI , while an accepting run of AI on t can be translated to a winning strategy for Eve.

AII . Trivially checking the tree root’s labeling.

AIII . The core idea behind the definition of the UCT AIII is that improper n-bit binary
counting can be recognised by a nondeterministic finite-word automaton A of size in O(n).
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q q′

A transition in C

b (q,G0) (q′, G0)

(q,G1) (q′, G1)

The corresponding transitions in AIII

(E0/A0, b)
(E1/A1, b)

(E1/A1, b)
(E0/A0, b)

Figure 1 From the universal finite-tree automaton C to the UCT AIII in the proof of Lemma 19.

Furthermore, all states of A are rejecting, except for a single “forever accepting” state (true).
See, for example, [1, Figure 2] for a concrete construction of such an automaton.

Accordingly, proper n-bit binary counting can be recognised by the dual of A, which is a
universal finite-word automaton B of size in O(n). Now, a universal word automaton Aw
for a word language L can be adapted to a universal tree automaton At for the language
of trees all of whose paths are in L, by simply adding � to every transition in Aw. (Notice
that this does not hold for a nondeterministic word automaton.) Hence, we can adapt B to
a universal finite-tree automaton C that recognises the language of finite trees all of whose
paths are a proper prefix of n-bit counter. Notice that all states of C are accepting, except
for a single “forever rejecting” state (false).

Now, all that is left for getting AIII is to adapt C to operate over the extended alphabet
and to only consider the binary-counting alphabet when there is an alternation between
E0/A0 and E1/A1 labeling. We do this by having two copies of C, each “remembering”
whether the last game-labeling was 0 or 1. This adaptation is illustrated in Figure 1.

Formally, let C = 〈ΣB , Q, ι, δ, F 〉. We define AIII = 〈Σ, QIII , ιIII , δIII , αIII〉, where
QIII = q0 ∪Q× {G0, G1}.
ιIII = q0.
δIII .

For every b ∈ ΣB , δIII(q0, (E0/A0, b)) = �(ι, G0) and δIII(q0, (E1/A1, b)) = �(ι, G1).
For every q ∈ Q and b ∈ ΣB , we define:
∗ δIII((q,G0), (E0/A0, b)) = �(q,G0)
∗ δIII((q,G0), (E1/A1, b)) = G1(δ(q, b)), where G1(TC), for a transition condition
TC of C, changes every instance of a state q in TC to (q,G1). For example,
G1(�q ∧�q′) = �(q,G1) ∧�(q′, G1).

∗ δIII((q,G1), (E0/A0, b)) = G0(δ(q, b)), where G0(TC), for a transition condition
TC of C, changes every instance of a state q in TC to (q,G0).

∗ δIII((q,G1), (E1/A1, b)) = �(q,G1)
αIII = F × {G0, G1}.

Notice that by the special structure of AIII , it is not only a UCT and even a (0, 0)-UWT.
J

Since condition III guarantees a bound on the number of alternations between E0/A0
and E1/A1 labels, the languages {Ln} can also be recognised by alternating weak automata.

I Lemma 20. For every n ∈ N, Ln is AWT-recognizable.

Proof. Analogously to the construction of a UCT for Ln in the proof of Lemma 19, an AWT
for Ln can be defined as the conjunction of three AWTs, BI , BII , and BIII , each checking
the corresponding requirement in the definition of Ln.
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The automata BII and BIII can be identical to the automata AII and AIII , respectively,
from the proof of Lemma 19, as they are already AWTs (and even (0, 0)-UWTs).

As for BI , it obviously cannot be identical to AI from the proof of Lemma 19, as the latter
heavily builds on the co-Büchi acceptance condition. Furthermore, the first requirement in
the definition of Ln is not AWT-definable. Yet, due to the third requirement in the definition
of Ln, in every tree t that belongs to Ln, all paths have up to (n+ 1)2n alternations between
E0/A0 and E1/A1 labelling. Hence, the first requirement in the definition of Ln can be
reformulated to “Eve wins t with up to (n+ 1)2n alternations between E0/A0 and E1/A1
nodes”, namely to “t belongs to Win(n+1)2n”, without changing Ln.

By Lemma 5, there is an AWT recognizing Win(n+1)2n , providing the desired AWT BI .
J

We establish in two steps the lower bound on the size of an AWT recognizing Ln: i) We
prove a claim on the weak-hierarchy levels of a family {Hm}m≥1 of languages that are quite
similar to {Ln}, but lack the explicit counting; and ii) We prove that an AWT for Ln must
be in the same level of the weak hierarchy as an AWT for H(n+1)2n .

Formally, Hm is the language of ΣG-labeled trees, such that a tree t is in Hm iff i) Eve
wins t, when viewing t as a co-Büchi game, ii) the root of t is labeled E0 or A0 if m is even,
and E1 or A1 if m is odd, and iii) In every path of t, there are up to m transitions from a
node labeled Ex/Ax to a node labeled Ey/Ay, for x 6= y ∈ {0, 1}.

The proof that Hm is strict for the mth level of the weak hierarchy follows the inductive
reasoning of showing that Winm is in the mth level of the weak hierarchy (Lemma 6), but
requires some additional manoeuvres, due to the asymmetry between Adam and Eve in Hm.
Specifically, in the induction step, when assuming toward contradiction a (0,m+ 1)-AWT
that recognises Hm+1 or a (1,m+ 2)-AWT that recognises Hm+1, we not only manipulate
subtrees in Hm and Hm, but also subtrees that are in the conjunction or disjunction of Hm

with languages that correspond to the second and third requirements in the definition of Hm.

I Lemma 21. For every m ∈ N, there is no (0,m)-AWT recognizing Hm.

Proof. We use the following simple AWTs: Let Root0 (resp. Root1) be a (0, 0)-AWT that
accepts a tree t iff the root of t is labeled E0/A0 (resp. E1/A1). For every m ∈ N, let Altm
be a (0, 0)-AWT that accepts a tree t iff in every path of t, there are up to m transitions
from a node labeled Ex/Ax to a node labeled Ey/Ay, for x 6= y ∈ {0, 1}. Observe that for
an even m, a tree t ∈ Hm iff t ∈ L(Eve wins) ∩ L(Root0) ∩ L(Altm), while t is in Hm iff
t ∈ L(Adam wins) ∪ L(Root1) ∪ L(Altm). We prove the claim by induction on m.

Base case. Recall that there is a (0, 0)-AWT recognizing H0 iff there is a (1, 1)-AWT
recognizing H0, which is the language of trees in which Eve wins and all paths are labeled
A0/E0. Let t be the single-path tree labelled A0 throughout. If a (1, 1)-AWT A recognises
H0, it must accept t. Since every loop in A is rejecting, an accepting run r of A on t only
has finite paths, ending with true. Let k be the length of the longest one. Let t′ be the tree
identical to t up to depth k and labelled A1 from there on. Then A accepts t′, but t′ /∈ H0.

Induction step. The induction hypothesis is that Hm is not recognised by a (0,m)-AWT (and
its dual, that Hm is not recognised by a (1,m+ 1)-AWT). There are two cases to consider,
an even m and an odd m.

Even m. Assume, towards a contradiction, a (0,m+ 1)-AWT A that recognises Hm+1. We
will build a (0,m)-AWT that recognises Hm, reaching a contradiction.
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Consider an arbitrary tree t′ ∈ L(Adam wins) ∩ L(Root0) ∩ L(Altm). Let t be the tree
consisting of one branch along which all nodes are labelled E1, and they all have a child
labelled E0 that in turn has a copy of t′ as its unique child.

First, we claim that t ∈ Hm+1: if Eve does not play into a copy of t′, the play sees only
labels E1 and is winning for Adam; if Eve plays into a copy of t′, then from there she loses.

Now let r be an accepting run of A on t. As m+ 1 is odd, there is a depth k of t, starting
from which r only assigns states of rank at most m. Let St′ be the set of states that r assigns
to the root of t′ at depth k, and let At′ be the automaton that is derived from A by setting
St′ to be the initial set, namely having the initial formula

∧
q∈St′ q (which can be translated

to an initial state). At′ is a (0,m)-AWT, since it lacks the m+1-ranked states of A.
Clearly, At′ accepts t′. Furthermore, At′ does not accept any tree in Hm: If it accepted

some tree t′′ ∈ Hm then A would also accept the tree t̂ derived from t by replacing the
occurrence of t′ at depth k with t′′. However, t̂ is not in Hm+1, since Eve wins it (by going
to t′′), its root is labeled E0/A0, and every path of it has up to m+ 1 alternations.

Let B be the automaton that is the disjunction of all of these At′ automata (there are
finitely many such automata, as each of them corresponds to a subset of A’s states) for
t′ ∈ L(Adam wins) ∩ L(Root0) ∩ L(Altm), and let C be the disjunction of B, Root1, and
Altm. Observe that C is a (0,m)-AWT.

We claim that C recognises Hm, leading to the claimed contradiction.
If t ∈ Hm, there are two cases: either t ∈ L(Root1) ∪ L(Altm) or t ∈ L(Adam wins) ∩

L(Root0) ∩ L(Altm). If t ∈ L(Root1) ∪ L(Altm) then C clearly accepts t. Moreover,
if t ∈ L(Adam wins) ∩ L(Root0) ∩ L(Altm) then B and therefore C accepts t. Hence
Hm ⊆ L(C).

If t ∈ Hm, then B does not accepts t since no At′ accepts t. Furthermore, t ∈ L(Root0)∩
L(Altm) so neither Root1 nor Altm accepts t. Hence C does not accepts t and L(C) = Hm.

Odd m. Observe that Hm+1 is recognised by a (0,m + 1)-AWT if and only if Hm+1 is
recognised by a (1,m+ 2)-AWT. Assume, towards a contradiction, that there is a (1,m+ 2)-
AWT A that recognises Hm+1. We will build a (1,m+ 1)-AWT that recognises Hm, reaching
a contradiction.

Consider a tree t′ ∈ Hm. Let t be the tree consisting of one branch along which all nodes
are labelled A0, and they each have a child labelled A1 that in turn has a copy of t′ as its
unique child.

First, we claim that t ∈ Hm+1: i) The label of t’s root is in {E0, A0}; ii) Since m is odd,
the root of t′ is labeled E1/A1 and thus there are up to m+ 1 alternations in all paths of
t; and iii) Eve wins t: if Adam does not play into a copy of t′, the play sees only labels A0
and is winning for Eve; if Adam plays into a copy of t′, then from there Eve has a winning
strategy.

Now let r be an accepting run of A on t. Since m+ 2 is odd, there is a depth k starting
from which r only assigns states of rank at most m+ 1. Let St′ be the set of states that r
assigns to the root of t′ at depth k, and let At′ be the automaton that is derived from A
by setting St′ to be the initial set. Observe that At′ is a (1,m+ 1)-AWT, since it lacks the
m+ 2-ranked states of A.

Obviously, At′ accepts t′. Furthermore, At′ does not accept any tree t′′ not in Hm, whose
root is labeled E1/A1: If it accepted such a tree t′′ then A would also accept the tree t̂ that
is derived from t by replacing the occurrence of t′ at depth k with t′′. However, t̂ is not in
Hm+1, since i) if Adam wins t′′ then Adam wins t̂; and ii) if there exists a path in t′′ with
more than m alternations then there exists a path in t̂ with more than m+ 1 alternations.

Let B be the automaton that is the disjunction of all of these At′ automata, and let C be



U. Boker and K. Lehtinen 21:15

the automaton that is the conjunction of B and Root1. Observe that C is a (1,m+ 1)-AWT
We claim that C recognises Hm, leading to the claimed contradiction. If t ∈ Hm, then

B and therefore C accepts t. If t /∈ Hm and the root of t is labeled E0/A0 then Root1 and
therefore C does not accept t. If t /∈ Hm and the root of t is labeled E1/A1 then no At′
accepts t, and therefore B and C do not accept t. Hence L(C) = Hm.

J

We now show that an AWT A for Ln cannot be in a lower level of the weak hierarchy
than an AWT A′ for H(n+1)2n , and must therefore have at least (n+ 1)2n states. The idea
is to construct A′ by having (n+ 1)2n adapted copies of A, each properly adding the extra
letters of the binary-counting alphabet. We get a much bigger automaton than A, yet on
the same level of the weak hierarchy, which provides the desired result.

I Lemma 22. For every n ≥ 1, an AWT recognizing Ln must have at least (n+ 1)2n states.

Proof. Let N = (n + 1)2n. Consider an AWT A that recognises Ln, and let m be the
minimal natural number such that A is in the (0,m)-AWT class. We will construct from A
a (0,m)-AWT A′ that recognises HN . This will imply the desired result, as by Lemma 21,
m must be at least N .

The idea in the construction of A′ is to follow the transitions of A, while properly adding
the extra letters of the binary-counting alphabet. In order to add the letters in a way that
matches a proper counting, A′ has N copies of A, each corresponding to a number between
0 and N − 1. The constructed automaton will be much bigger than A, yet on the same level
of the weak hierarchy, which provides the desired result.

Formally, let A = 〈Σ, Q, ι, δ,Ω〉. (For considering the level of A in the weak hierarchy, we
view it as a parity automaton that satisfies the weakness constraint.) For every i ∈ [0..N − 1],
let bit(i) stand for the letter in ΣB that appears in the ith position of the n-bit counter. For
example, for n = 3 and i = 7, we have bit(7) = $, since $ is the letter in the 7th position in
the counter 000$001$ . . ..

In addition to the proper letter of ΣB, A′ should also “remember” whether the last
alternation was from E0/A0 to E1/A1 or vice versa. Yet, this can be derived from the
counter position, as in even positions of the counter, the last alternation should be to
E0/A0, and in odd positions, the other way round. We therefore define the function
NextIndex : ΣG × [0..N − 2] → [0..N − 1], by NextIndex(g, i) = i + 1 if (i is even and
g ∈ {E1, A1} or i is odd and g ∈ {E0, A0}), while in other cases NextIndex(g, i) = i.

We can now define the AWT A′ = 〈ΣG, Q′, ι′, δ′,Ω′〉, where
Q′ = Q× [0..N − 1].
ι′ = (ι, 0).
δ′: For every q ∈ Q, i ∈ [0..N−1], and g ∈ ΣG, we have δ′((q, i), g) = Next(δ(q, (g, bit(i))),
where Next(TC), for a transition condition TC of A, changes every instance of a state q
in TC to (q,NextIndex(g, i)).
Ω′: For every q ∈ Q and i ∈ [0..N − 1], Ω′(q, i) = Ω(q).

Observe that A′ is in the same level of the weak hierarchy as A, since the priorities and
transitions in A′ are the same as in A, except for having a component number, which does
not affect the priority of a state.

It is left to show that A′ recognises HN . Consider a tree t′ ∈ HN . Let t be the Σ-tree
that is derived from t′ by adding the binary-counting labelling as follows: i) labelling the
root of t with 0; ii) keeping the binary-counting labelling of the parent node if there was no
alternation between E0/A0 and E1/A1 labelling; and iii) labelling the node with the next
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letter of a proper binary-counter when there is an alternation between E0/A0 and E1/A1
labelling. Since t′ belongs to HN , t belongs to Ln and there is some accepting run-tree r of
A on t. Recall that r has labels in Q× (ΣG ×ΣB). Let r′ be the (Q×ΣB)×ΣG-tree that is
derived from r by changing the labelling of every node from (q, (σG, σB)) to ((q, σB), σG).
Observe that r′ is an accepting run of A′ on t′.

As for the other direction, consider a tree t′ accepted by A′ via some run-tree r′. Recall
that r′ has labels in (Q× ΣB)× ΣG. Let r be the Q× (ΣG × ΣB)-tree that is derived from
r′ by changing the labelling of every node from ((q, σB), σG) to (q, (σG, σB)). Observe that r
is an accepting run of A on some Σ-tree t, such that t is identical to t′ except for having
additional ΣB labelling to each node. Hence, t ∈ Ln and t′ ∈ HN . J

Gathering the lemmas above, we get the blow-up involved in the translation.

I Theorem 23. The size blow-up and state blow-up involved in translating UCTs to AWTs,
when possible, is in 2Ω(n).

6 Conclusions

Up until the recent quasi-polynomial parity game algorithms, the best known blow-up of
turning APW into AWW roughly matched the complexity of known algorithms for solving
parity games. Here we have again closed this gap by establishing a quasi-polynomial APW
to AWW transformation. This immediately improves the worst-case complexity of parity
game solving via reduction to the AWW emptiness problem [23] to quasi-polynomial. While
a more effecient APW to AWW transformation will always yield a more efficient parity game
solving algorithm, the extent to which the converse holds is an open question.

In stark contrast, our lower bound for transformations to weak tree automata shows that
on trees the simplicity of the weak acceptance condition comes at a much higher cost.

References
1 U. Boker and O. Kupferman. Translating to co-Büchi made tight, unified, and useful. ACM

Trans. Comput. Log., 13(4):29:1–29:26, 2012.
2 U. Boker and Y. Shaulian. Automaton-based criteria for membership in CTL. In Proceed-

ings of LICS, pages 155–164, 2018.
3 J. Bradfield. Simplifying the modal mu-calculus alternation hierarchy. In Annual Sym-

posium on Theoretical Aspects of Computer Science, pages 39–49. Springer, 1998.
4 J.C. Bradfield. The modal mu-calculus alternation hierarchy is strict. Theoretical Computer

Science, 195(2):133 – 153, 1998.
5 C. S. Calude, S. Jain, B. Khoussainov, L. Bakhadyr, W. Li, and F. Stephan. Deciding parity

games in quasipolynomial time. In Proceedings of STOC, pages 252–263. ACM, 2017.
6 T. Colcombet, D. Kuperberg, C. Löding, and M. Vanden Boom. Deciding the weak defin-

ability of Büchi definable tree languages. In LIPIcs-Leibniz International Proceedings in
Informatics, volume 23. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.

7 E.A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In Proceeding
of FoCS, pages 368–377. IEEE, 1991.

8 M. Jurdzinski and R. Lazic. Succinct progress measures for solving parity games. In
Proceedings of (LICS), pages 1–9, 2017.

9 R. Kaivola. Axiomatising linear time mu-calculus. In International Conference on Concur-
rency Theory, pages 423–437. Springer, 1995.

10 D. Kirsten. Alternating Tree Automata and Parity Games, pages 153–167. Springer Berlin
Heidelberg, 2002.



U. Boker and K. Lehtinen 21:17

11 O. Kupferman and M. Y. Vardi. Π2
⋂

Σ2 ≡ AFMC. In Proceedings of ICALP, pages
697–713. Springer, 2003.

12 O. Kupferman and M.Y. Vardi. Weak alternating automata and tree automata emptiness.
In Proceedings of STOC, pages 224–233, 1998.

13 O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. ACM
Transactions on Computational Logic, 2(2):408–429, 2001.

14 K. Lehtinen. A modal µ perspective on solving parity games in quasipolynomial time. In
Proceedings of LICS, 2018.

15 K. Lehtinen and S. Quickert. Σµ2 is decidable for Πµ
2 . In Conference on Computability in

Europe, pages 292–303. Springer, 2017.
16 P. A. Lindsay. On alternating omega-automata. J. Comput. Syst. Sci., 36(1):16–24, 1988.
17 R. McNaughton. Testing and generating infinite sequences by a finite automaton. Inform-

ation and control, 9(5):521–530, 1966.
18 M. Michel. Complementation is more difficult with automata on infinite words. CNET,

Paris, 1988.
19 A.W. Mostowski. Hierarchies of weak automata and weak monadic formulas. Theoretical

Computer Science, 83(2):323–335, 1991.
20 D.E. Muller and P.E. Schupp. Simulating alternating tree automata by nondeterministic

automata: New results and new proofs of theorems of Rabin, McNaughton and Safra.
Theoretical Computer Science, 141:69–107, 1995.

21 D. Niwiński and I. Walukiewicz. A gap property of deterministic tree languages. Theoretical
Computer Science, 303(1):215–231, 2003.

22 M. Skrzypczak and I. Walukiewicz. Deciding the topological complexity of Büchi languages.
In LIPIcs-Leibniz International Proceedings in Informatics, volume 55. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2016.

23 A. Di Stasio, A. Murano, G. Perelli, and M. Y. Vardi. Solving parity games using an
automata-based algorithm. In International Conference on Implementation and Application
of Automata, pages 64–76. Springer, 2016.

24 T. Wilke. CTL+ is exponentially more succinct than CTL. In Proc. of FoSSaCS, volume
1738 of LNCS, pages 110–121. Springer, 1999.

A Appendix – Omitted Proofs

A.1 Proofs of Section 3
Theorem 4 Every ω-regular word language is recognised by some (0, 2)-AWW, and there
are ω-regular word languages not recognised by any (0, 1)-AWW.

Proof. In [16], there is a translation of an arbitrary deterministic Muller automaton to a
(1, 3)-AWW. Hence, given an ω-regular language L, one can represent its dual language L by
a deterministic Muller automaton A and translate it to an equivalent (1, 3)-AWW B. The
dual of B is a (0, 2)-AWW recognizing L.

As for the negative part, consider the language L over the alphabet Σ = {a, b}, consisting
of words with infinitely many a’s. Observe that the word w = ababbabbbab4ab5 . . . is in L.

Assume towards contradiction a (0, 1)-AWW A recognizing L, and having a set of states
Q. Then, A accepts w via some run r. Recall that r is a Q× Σ-tree. For every n ∈ N, let
Sn be the set of states of A that appear in the labeling of nodes of r at the level n.

Since Q is finite and the sequences of subsequent b’s in w are unbounded, there is a set
S ⊆ Q and two numbers x < y ∈ N, such that there are only b’s between the positions x and
y of w, S = Sx = Sy, and S = Sn for infinitely many n ∈ N.
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As A is weak and its top rank is rejecting, no state of S can be from the top rank.
(Otherwise there is a path in r all of whose nodes are from the top rank, implying that the
path is rejecting.) Hence, all states of S are from the 0 rank. Thus, from every node v in the
x level of r, there is a run on the finite word by−x, such that every state that appears in its
labeling is from the 0-level of A, and all its leaves are labeled with states from S or true.

Let w′ be the infinite word that is the same as w up to position x, and from there on has
only b’s. Then A has an accepting run r′ on w′ that is the same as r up to level y, and then
for every i ∈ N and node v in a y + i(y − x) level that is labeled with some state q, it makes
the next y − x steps from v as the run r from a node in its x level that is labeled with q.
Yet, w′ 6∈ L, leading to a contradiction. J

Lemma 5 For every n ∈ N, Winn is recognised by a (0, n)-AWT.

Proof. We first define a (0, n)-AWT Wn and then show that it recognises Winn.
Wn:

Alphabet: ΣG (Namely, {E0, E1, A0, A1}.)
States: {q0, q1, . . . , qn}
Initial state: qn
Priorities (ranks): Ω(qj) = j for all j
Transitions:
δ(q0, E0) = ♦q0; δ(q0, A0) = �q0; δ(q0, E1/A1) = false

For every j ∈ [1..n]:

δ(qj , E0) =
{
♦qj n is even

♦qj−1 n is odd

δ(qj , E1) =
{
♦qj n is odd

♦qj−1 n is even

δ(qj , A0) =
{
�qj n is even

�qj−1 n is odd

δ(qj , A1) =
{
�qj n is odd

�qj−1 n is even

Observe that Wn is indeed a (0, n)-AWT.
Next, we show that Wn recognises Winn. The transition relation guarantees that in every

infinite run of Wn on any tree t, whenever a node v is labeled E0/A0 (resp. E1/A1), every
successor of v is seen at a state of Wn of even (resp. odd) rank.

Let σ be a winning strategy for Eve in t, such that any play that agrees with σ only
sees up to n alternations. We translate σ into an accepting run rσ of Wn on t by resolving
the nondeterminism of Wn at a node v ∈ t labelled Ei along σ(v). That is, the choice of a
successor node in a ♦-transition is done along the choice of Eve in σ. Since no play that
agrees with σ sees more than n alternations, rσ does not reach false. Furthermore, since
every path of t that agrees with σ sees only finitely many nodes labeled E1/A1, the run rσ is
accepting.

Conversely, an accepting run r of Wn on a tree t translates into a strategy σ for Eve on
the game t: first observe that r visits up to one state for every node of t, and up to one
successor of every node labelled E0/E1; Then, at node v labelled E0/E1, the strategy σ
chooses the unique successor that r visits. Since r is accepting, every path of r can have
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only finitely many nodes labeled E1/A1, implying that every play that agrees with σ sees
E1/A1 only finitely often. J

Lemma 6 For every n ∈ N, Winn is not recognised by a (0, n)-AWT.

Proof. We prove the claim by induction on n.

Base case. Recall that there is a (0, 0)-AWT recognizing Win0 iff there is a (1, 1)-AWT
recognizing Win0, which is the language of trees in which Eve wins without ever seeing A1/E1.
Let t be the single-path tree labelled A0 throughout. If a (1, 1)-AWT A recognises Win0, it
must accept t. Since every loop in A is rejecting, an accepting run r of A on t only has finite
paths, ending with true. Let k be the length of the longest one. Let t′ be the tree identical
to t up to depth k and labelled A1 from there on. Then A accepts t′, but t′ /∈Win0.

Induction step. The induction hypothesis is that Winn is not recognised by a (0, n)-AWT
(and its dual, that Winn is not recognised by a (1, n + 1)-AWT). There are two cases to
consider, an even n and an odd n.

Even n. Assume, towards a contradiction, a (0, n+ 1)-AWT A that recognises Winn+1. We
will build a (0, n)-AWT that recognises Winn, reaching a contradiction.

Consider an arbitrary tree t′ ∈ Winn. Let t be the tree consisting of one branch along
which all nodes are labelled E1, and they all have a child labelled E0 that in turn has a copy
of t′ as its unique child.

First, we claim that t ∈Winn+1: if Eve does not play into a copy of t′, the play sees only
labels E1 and is winning for Adam; if Eve plays into a copy of t′, then from there she either
loses or wins but sees over n alternations within t′ and therefore over n + 1 alternations
overall.

Now let r be an accepting run of A on t. Since n + 1 is odd, there is a depth k of t,
starting from which r only assigns states of rank at most n. Let St′ be the set of states that
r assigns to the root of t′ at depth k, and let At′ be the automaton that is derived from A by
setting St′ to be the initial set, namely having the initial formula (which can be translated
to an initial state)

∧
q∈St′ q. Observe that At′ is a (0, n)-AWT, since it lacks the n+1-ranked

states of A.
Obviously, At′ accepts t′. Furthermore, At′ does not accept any tree out of Winn, namely

in Winn: If it accepted some tree t′′ ∈ Winn then A would also accept the tree t̂ that is
derived from t by replacing the occurrence of t′ at depth k with t′′. However, t̂ is not in
Winn+1—Notice that since the last alternation on any play winning for Eve must be from
E1/A1 to E0/A0, in t′′ Eve either wins while seeing only up to n− 1 alternations or the root
of t′′ is labelled A0/E0. Thus, t̂ is not in Winn+1, since if Eve plays to t′′, she wins and sees
either at most n− 1 alternations within t′′ and at most n+ 1 overall, or up to n alternations
within t′′ but only one more, i.e. n+ 1 alternations overall.

Since A is finite, the set {St′ |t′ ∈Winn} is finite and therefore the disjunction
∨
t′∈Winn

At′
of (0, n)-AWTs is a (0, n)-AWT that recognises Winn – a contradiction.

Odd n. Observe that Winn+1 is recognised by a (0, n + 1)-AWT if and only if Winn+1 is
recognised by a (1, n+ 2)-AWT. Assume, towards a contradiction, that there is a (1, n+ 2)-
AWT A that recognises Winn+1. We will build a (1, n + 1)-AWT that recognises Winn,
reaching a contradiction. The construction is analogous to the above case of an even n, using
the dual trees.

Consider a tree t′ ∈ Winn. Let t be the tree consisting of one branch along which all
nodes are labelled A0, and they each have a child labelled A1 that in turn has a copy of t′ as
its unique child.
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First, we claim that t ∈Winn+1: if Adam does not play into a copy of t′, the play sees
only labels A0 and is winning for Eve; if Adam plays into a copy of t′, then from there Eve
has a winning strategy, such that every play that agrees with it has up to n alternations.
Observe that such a play in t′ either sees up to n− 1 alternations, or begins with A1/E1,
since the last alternation must be from E1/A1 to E0/A0. Then, in either cases, the overall
play sees up to n alternation.

Now let r be an accepting run of A on t. Since n+ 2 is odd, there is a depth k starting
from which r only assigns states of rank at most n+ 1. Let St′ be the set of states that r
assigns to the root of t′ at depth k, and let At′ be the automaton that is derived from A
by setting St′ to be the initial set. Observe that At′ is a (1, n+ 1)-AWT, since it lacks the
n+2-ranked states of A.

Obviously, At′ accepts t′. Furthermore, At′ does not accept any tree not in Winn: If
it accepted some t′′ /∈ Winn then A would also accept the tree t̂ that is derived from t by
replacing the occurrence of t′ at depth k with t′′. However, t̂ is not in Winn+1, since if Adam
plays to t′′, he either wins or forces to see more than n alternations within t′′ and therefore
more than n+ 1 alternations overall.

Since A is finite, the set {St′ |t′ ∈Winn} is finite and therefore the disjunction
∨
t′∈Winn

At′
of (1, n+ 1)-AWTs is a (1, n+ 1)-AWT that recognises Winn – a contradiction.

J

A.2 Proofs of Section 4
Lemma 11 Given an APW A, the APW Ak accepts a word w if and only if Eve wins the
k-register game on G(w,A) from (ι, w).

Proof. Recall that by Proposition 3, A accepts a word w if and only if Eve wins the parity
game G(w,A) from (ι, w). The intuition is that G(w,Ak) encodes as a parity game the
k-register game on G(w,A) by encoding the register-configuration in the state space, Eve’s
resetting choices as new disjunctions and the highest output from resets between two states
as priorities.

Positions of G(w,Ak) are in B+(Q× Ik × [1..2k + 1])× Σω while configurations of the
k-register game on G(w,A) consist of a position B+(Q)× Σω and a tuple of register values.
G(w,Ak) begins at ((ι, (0, .., 0), 1), w) while the k-register game on G(w,A) begins at

(ι, w) with register configuration (0, .., 0).
Now, observe that at a position (q, au) in G(w,A) at register configuration x̄, Eve has a

choice to reset a register, or let the parity game proceed to (δ(q, a), u). Similarly in G(w,Ak),
from ((q, x̄, p), au) Eve has a choice to either proceed with a move or reset a register.

Whenever Eve decides to proceed with a parity-game move, the decision falls in both
games to Adam if δ(q, a) is a conjunction, and to Eve otherwise. Then Eve again has, in both
games, the option between proceeding in the parity game or a reset. Observe that a move
(that is, not a reset) only affects the register configuration in the register game on G(w,A) if
it reaches a position (q, j) where q is a state (because intermediate positions have priority
0 in the parity game) and in G(w,Ak) a non-reset move only affects x̄ if it is move(q, x̄, p)
where q is a state. In both cases, if q is a state, the register configuration is updated to
contain the maximum of the old value and the priority of q in A.

If Eve decides to reset a register i in the register game on G(w,A) at (b, u) with register
configuration x̄, then this updates the register configuration in the same way as Eve’s choice
of reseti(b, x̄, p) updates x̄. Furthermore, the output in G(w,A) is 2i if xi is even and 2i+ 1
if xi is odd. Observe that the largest such output between two positions (q, au) and (q′, u) is
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recorded in G(w,Ak) as the priority p of (q′, x̄, p). This guarantees that the largest priority
output infinitely often on a play in the register-game on G(w,A) matches the highest priority
seen infinitely often in the corresponding play in G(w,Ak). On the other hand, in a play
with finitely many resets, the maximal priority seen in G(w,Ak) infinitely often is 1, causing
Eve to lose, as required.

Then a winning strategy for Eve in one game translates into a winning strategy for Eve
in the other game. J

Lemma 14 A parity game with scc-size 1 has defensive register-index 1.

Proof. From the definition of register-index, instead of considering an arbitrary parity game
and an arbitrary position of it, it suffices to consider the single-player parity games G induced
by any winning strategy for Eve from that position. Observe that in the register games on
G, Eve’s strategy consists of just resetting the register.

We say that a defensive winning strategy in a 1-register game G is “very defensive” if
whenever starting the game with the value 0 in the register, a play that agrees with the
strategy does not output 3. (That is, it only outputs 2.)

We prove by induction on the number n of positions in a game G with scc-size 1 that
Eve has a very-defensive winning strategy in the 1-register game on G.

The case of n = 1 is trivial.
For the inductive case, let G′ be the game induced by the positions of G of priority up

to p− 2, where p is the maximal even priority that appears in some cycle of G. Let Gs be
the unique maximal strongly connected component in G′. If such a Gs does not exist, then
Eve’s strategy in the 1-register game on G is to reset whenever p is seen; since there are no
cycles without p, this strategy is winning and very defensive.

If Gs does exist, then by the induction hypothesis, Eve has a very defensive winning
strategy σs in the 1-register game on Gs. In addition, since G is of scc-size 1, there is no
cycle in G that is disjoint to Gs.

Eve’s very defensive winning strategy σ in the 1-register game on G is as follows: Reset
whenever entering Gs, and follow σs within Gs.

Observe that a play that agrees with σ must see p between leaving and entering Gs
(else Gs either isn’t maximal, or there is a cycle with an odd maximal priority). Hence,
when entering Gs, the play outputs 2, the register’s content is 0, and the play continues
along Gs, which is very defensive. Thus, σ is a very defensive winning strategy: there is no
output of value 3, neither when entering Gs nor when remaining in it, and there are infinitely
many outputs of value 2, either by the strategy σs or by leaving and entering Gs infinitely
often. J

Lemma 16 Given an ultimately periodic word w = ucω and an APW A with n states, the
parity game G(w,A) has register-index at most 1 + logn.

Proof. We show that the scc-size of G(w,A) is at most n. Then, from Lemma 15, its
register-index is at most 1 + logn.

First note that all strongly connected components of G(w,A) occur in the subgame
G(cω,A). We consider the graph H that is derived from G(cω,A) by ignoring the intermediate
positions (b, v), where b is a boolean formula between positions of the form (q, v), for a state
q. That is, let H be the graph consisting of just the vertices (q, v) of G(cω,A), where q is a
state. The edges of H connect positions (q, v) and (q′, v′) if (q′, v′) is reachable from (q, v)
in G(cω,A) directly, that is, with a path which does not visit yet another position (q′′, v′′)
where q′′ is a state.
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G(cω, A) has ssc-size no larger than the graph H: a set of distinct strongly connected
components in G(cω, A) induces a set of strongly connected components in H. If m is the
size of the cycle c, then each strongly connected component of H must be of size at least m.
H is of size at most mn, so the ssc-size of H, and therefore of G(w,A), is at most n. J

Lemma 17 Every APW A is equivalent to its parameterised version Ak, for k = 1 + logn.

Proof. Since two ω-regular languages are equivalent if they agree on the set of ultimately
periodic words [17], it suffices to argue that A and Ak agree on ultimately periodic words.

From Lemma 11, Ak accepts an ultimately periodic word w if and only if Eve wins the
k-register game on G(w,A). From Lemma 16, this is the case exactly when Eve wins the
parity game on G(w,A), that is, when A accepts w. J

Theorem 18 The size blow-up and state blow-up involved in translating alternating parity
word automata to alternating weak word automata is at most quasi-polynomial. In particular,
every APW A of size (resp. number of states ) n is equivalent to an AWW of size (resp.
number of states) 2O((logn)3).

Proof. From Lemma 17, an APW A with n states and d priorities is equivalent to its
parameterised APW Ak for k = 1 + logn, having n · dk · (2k + 1) states and 2k + 1 priorities.
Ak can then be turned into a weak automaton using standard techniques [12] with a O(md′)
blow-up, where m is the number of states and d′ the number of priorities, which yields
an AWW with 2O((logn)3) many states, since m is here in O(knk+1) ≤ 2O((logn)2) and d′ is
2k + 1 ∈ O(logn).

In case that the size of A is dominated by the size e of its transition function, namely
when e > n, observe that the parameter k, the number of states in Ak, and the number
of priorities in Ak do not depend on e, while the size of Ak’s transition function is in
O(k2edk) ≤ 2O((log e)2). Since the translation in [12] does not blow up the transition-function
size more than it blows up the number of states, we end up with an AWW of size in
2O((log e)3). J
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