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Abstract

Is there a physical constant with the value of the halting function? An answer to this
question, as holds true for other discussions of hypercomputation, assumes a fixed
interpretation of nature by mathematical entities. We discuss the subjectiveness of
viewing the mathematical properties of nature, and the possibility of comparing
computational models having different views of the world. For that purpose, we
propose a conceptual framework for power comparison, by linking computational
models to hypothetical physical devices. Accordingly, we deduce a mathematical
notion of relative computational power, allowing for the comparison of arbitrary
models over arbitrary domains.

In addition, we claim that the method commonly used in the literature for
“strictly more powerful” is problematic, as it allows for a model to be more powerful
than itself. On the positive side, we prove that Turing machines and the recursive
functions are “complete” models, in the sense that they are not susceptible to this
anomaly, justifying the standard means of showing that a model is more powerful
than Turing machines.

Key words: hypercomputation, Turing machine, computability, computational
power, computational models

1 Prelude

E.V., youngest daughter of E.T., arrived on Earth a couple of days ago. Con-
sidering the sophisticated equipment of her spaceship, the speculation is that
she—presumably like other of her planet’s inhabitants—is capable of hyper-
computation. E.V., in addition to her strange and fascinating beauty, acts
extremely friendly and appears willing to share her advanced knowledge with
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us earthlings. The problem is an apparent lack of common language, and,
moreover, the very different ways in which she and we humans seem to view
the universe.

Yesterday, E.V. demonstrated for us an interesting device, one which we be-
lieve to be a computer of some sort, but with most peculiar input and output
entities. E.V. seems to pay great attention while mixing colored clays and
shaping them into a ball, which she proceeds to insert into the device, and
then meaningfully stares at the colored ball sliding out of the machine a few
moments later. It has been suggested that we compare the computational
power of E.V.’s computer, henceforth nicknamed Nuri, with our own Turing
machines (TMs). Now, it is clear that Nuri and TMs operate over different
domains. Though unlikely, it might even be that Nuri’s domain is of a differ-
ent cardinality (for instance, it may be sensitive to non-enumerable colors or
dimensions of the clay shapes). The question is: How can we know whether
Nuri’s architecture is as powerful, or perhaps more powerful, than TMs?

Nuri, as a physical device, should not be compared directly with our TM,
which is an abstract computational model. It is very likely that Nuri’s phys-
ical input/output entities will remain gibberish to us, exactly as the flashing
pixels on our monitors might be undecipherable for E.V. Thus, the object
we really wish to compare with the TM is the computational model of Nuri,
as viewed by E.V. Generally speaking, every physical device might be under-
stood as implementing various computational models, depending on the user’s
interpretation of its physical interface.

Today has seen a blossoming of suggestions for the possible computational
models of Nuri. Before speculating whether a suggested computational model
really fits the way E.V. sees Nuri, we need to define how to compare the
power of the suggested models with TM. Comparing the power of arbitrary
computational models operating over arbitrary domains, is the main subject of
this paper.

What we are basically interested in knowing is if E.V. is capable of computing
with a device (e.g. Nuri) that implements her model all that we humans can
compute with a device (e.g. P.C.) that implements the TM. If yes, we’ll say
that E.V.’s model is as powerful as ours. If it turns out that E.V. can make
additional computations with her Nuri, over and above those of our TMs, we
will be forced to conclude that the Nuri model is actually more powerful; that
is, it is hypercomputational.

Now, there are two common meanings to hypercomputability :

(1) Computing more than a TM. See, for example, [15, p. 1]: “Hypercompu-
tation: computing more than the Turing machine”.

(2) Computing a non-TM (incomputable) function. See, for example, [11], or
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[7, p. 1]: “Hypercomputation is the computation of functions or numbers
that cannot be computed in the sense of Turing . . . .”

Assuming a fixed view of the world, the two meanings coincide: once you
have an incomputable function you may add it as an oracle to TM and get
the hypercomputation of the first definition. This is not the case, however,
with E.V. She might compute what seems to us to be the halting function,
while for her it’s just the parity function, as she has a different view (coding)
of her machines. So, to venture a claim that E.V. is capable of hypercom-
putation, we need to adopt the first definition above, which we will name
strong-hypercomputability, to avoid any confusion.

The need to compare computational models embodying different worldviews is
not unique to the current situation provoked by E.V. We find it also relevant,
for example, when comparing a model operating over the reals with TM.

A reasonable starting point for comparing models over different domains might
be the belief that isomorphic models are of identical power. That is, models
computing the same set of functions, up to a different naming of their domain
elements, are—for all intents and purposes—deemed equipotent. But can we
be sure that TM is not isomorphic to a strongly-hypercomputational model?
Surprisingly, perhaps, it turns out that a computational model can be isomor-
phic to one computing more functions. Fortunately, we can show that TMs
are an exception and are not susceptible to this anomaly. So, as long as the
Nuri model is countable, we know how to proceed with our investigation.

Isomorphism may be a good starting point, but it is not general enough, if only
because Nuri’s domain of operations may be of a larger cardinality than our
countable, earth-bound devices. The common approach, in this case, would
be to require an injection between the domains, up to which the stronger
model mimics the functionality of the weaker one. We will claim that such an
approach is too permissive, allowing one to hide computational power in the
mapping. A somewhat philosophical outlook on these questions will lead us to
a formal method for comparing arbitrary computational models over arbitrary
domains. With this method in hand, we will be ready to return to an analysis
of E.V.’s Nuri.

2 Introduction

Our goal is to formalize comparisons of computational models, that is, the
determination when one set of partial functions is computationally more pow-
erful than another set. We seek a robust definition of relative power, one that
does not depend itself on any notion of computability. It should allow one to
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compare arbitrary models over arbitrary domains in some quasi-ordering that
captures the intuitive concept of computational strength. Such a comparison
notion (or notions) should also allow one to prove statements like “analogue
machines are strictly more powerful than digital devices,” even though the
two models operate over domains of different cardinalities.

With a satisfactory comparison notion in place, we look into mathematical
relations between computational models, and properties they confer on mod-
els. We call a model that is not as powerful as any of its proper expansions
“complete.” We investigate completeness, and check whether some classical
models enjoy this property.

Extensionality. We are only interested in the computational aspect of com-
putational models (extensionality), that is, which problems can be solved by
a model, regardless of the solution’s complexity or the model’s mechanisms.
Hence, a computational model is represented simply by a set of (partial) func-
tions (or multivalued functions) over the domain of its operation.

The Problem. Though model comparison is a common practice in the lit-
erature, it is usually done without a formal comparison notion and without
justification for the chosen method. To the best of our knowledge, there is cur-
rently no satisfactory general means for comparing arbitrary computational
models operating over arbitrary domains. A notion is lacking via which one
could show, for example, that analogue computers are strictly more powerful
than Turing machines, as well as show that finite automata are more powerful
than some weak analogue model. In Section 5, we list some of the familiar
comparison methods and discuss their ramifications.

The Framework. In Section 3, we propose a general, philosophical, def-
inition of a computational model and of relative computational power. We
understand a computational model to be a mathematical modeling and ideal-
ization of some hypothetical physical device, from a specific point of view of
the world. A model B is at least as powerful as A if it has the potential to
do whatever A does, under any possible view of the world. Accordingly, we
provide, in Section 4, a method (Definition 3) for comparing arbitrary models
over arbitrary domains.

Completeness. In Section 6, we show that the method usually used in the
literature for “more powerful” (´) is mathematically problematic, as it allows
for a model to be more powerful than itself (A ´ A). We define a model that
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is not as powerful as any of its proper expansions to be complete. The stan-
dard method of comparison is suitable only for such complete models. On the
positive side, we prove in Section 7.1 that Turing machines and the recursive
functions are complete with respect to the desired comparison notions.

Computability. In Section 7, we show that some of the models known to
be of equivalent power to Turing machines (the recursive functions, random
access machines and counter machines) are indeed so by our suggested general
notion.

Strong Hypercomputation. In Section 7.1, we prove that Turing ma-
chines and the recursive functions are complete models. Accordingly, we pro-
vide a simpler comparison notion for showing that a model is strongly hy-
percomputational. This notion provides a justification for the (otherwise im-
proper) comparison method used in the literature for showing that a model is
strongly hypercomputational.

Note. We use the Z-standard [4] for function arrows. For example, −7→ de-
notes a partial function, →→ is used for a total surjective function, and ½ is
an injection. We use double-arrows for mappings (multi-valued functions). So
⇒⇒ denotes a total surjective mapping.

3 Conceptual Framework

We first propose a general, philosophical, definition of a computational model,
and—in Section 3.2—of relative computational power. In Section 4, we will
formalize these definitions for comparing arbitrary models over arbitrary do-
mains.

3.1 What is a Computational Model?

We can think of a computational model as a mathematical modeling and
idealization of some hypothetical physical device, from a specific point of view
of the world (see Fig. 1).

• A physical device gets a physical input and returns a physical output. For
example, an electric device may take some electric voltage at two of its pins
as input, and return a voltage at two other pins as output.
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Fig. 1. A computational model is a mathematical modeling of some hypothetical
physical devices, from a specific point of view of the world

• A corresponding computational model takes a specific point of view of the
physical world. For example, a model of a digital computer might view a
voltage lower than 0.5v as the binary value 0 and of 0.5v or higher as 1.
That is, the domain of the model, D, is a “view” of the physical world, W .
This view is a partial surjective function v : W →7→ D.

• The device computes a function on world entities (in our example above,
ξ : R → R), while from the model’s point of view it computes a function
on its domain (in our example, f :{0, 1} → {0, 1}).

A computational model, by itself, can be viewed as a “black box,” computing
a set of partial functions. The domain and range of functions are identical,
except that the range is extended with ⊥, representing “undefined.”

The modeling of a hypothetical device from a specific point of view of the world
will be at the heart of our method of comparing different models. The world
can be chosen to be any set of cardinality at least as large as the cardinality
of the model’s domain.

The idea that a model encapsulates a point of view of the world is shared by
Minsky [13]:

We use the term “model” in the following sense: To an observer B, an object
A* is a model of an object A to the extent that B can use A* to answer ques-
tions that interest him about A. The model relation is inherently ternary.
. . . It is understood that B’s use of a model entails the use of encodings for
input and output, both for A and for A*. If A is the world, questions for A
are experiments.

Different Domain and Range. There are models with different domain
and range, e.g. numeral input and boolean output. A generalized view is to
consider the “actual” model’s domain to be the union of the original domain
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and range.

Uniform Computation. It is common to have models with functions of
any fixed arity, like the recursive functions, for example. We consider the
“actual” domain (and range) to be the set of all finite tuples of elements of
the original domain. This is the view taken for Turing machines, in the BSS
model [1, pp. 69–70], and implicitly with recursive functions when comparing
them to Turing machines.

Computing over Structures. There are models defined over structures,
that is, over sets together with “built-in” functions and relations. See, for
example, [3,18,1]. We consider the structure’s set as the domain, and include
the structure’s functions and relations in the model.

3.2 Comparing Computational Power

We generally say that a model B is at least as powerful as A, written B %

A, if it can do whatever A does. When both models have the same domain
representation, it means “containment”: B is at least as powerful as A if
it computes all the functions that A does. The question is how one should
compare models operating over different domains, as they compute formally-
different functions.

We extend the above characterization as follows: B is at least as powerful as
A if it has the potential to do whatever A does for every possible user (an
abstract user, not necessarily human). In other words, for every view that
A has of the world (v : W →7→ dom A), there is a view by B of the world
(u : W →7→ dom B), such that B has the abstraction capabilities of A, and
all the functionality of A from A’s point of view (see Fig. 2, Definition 2, and
Definition 3).

Assumption. We want to allow the world-domain W to be as big as re-
quired, as well as the resolution of its elements to be enlarged as much as
required. That is, all elements x ∈ W may be considered as sets of the same
cardinality.
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Fig. 2. The “stronger” model, B, should have the potential to provide all the func-
tionality of the “weaker” model, A, from any user point of view

4 The Formal Comparison Notion

We need to formalize the conceptual framework of the previous section.

Definition 1 (Computational Model)

• A domain is a nonempty set of elements.
• A computational model A over domain D is an abstraction of an object that

computes a set of partial functions f : D−7→ D, which may be interpreted as
total functions f : D → D ∪ {⊥}.

• We write dom A for the domain over which model A operates.
• The extensionality of a model A, denoted ext A, is the set of partial func-

tions that A computes.
• For models A and B, and a function f we shall write f ∈ A as shorthand

for f ∈ ext A, and A ⊆ B as short for ext A ⊆ ext B.
• We say that a model B properly expands model A if B ) A.

Some clarifications regarding function notations:

• Two partial functions, f and g, over the same domain are (extensionally)
equal, denoted f = g, if they are defined for exactly the same elements of
the domain (f(x) = ⊥ iff g(x) = ⊥) and have the same value whenever they
are both defined (f(x) = g(x) if f(x) 6= ⊥).

• A function f : D−7→ D′ is defined over the subsets of D, f : P(D)−7→ P(D′),
by f(X) := {f(x) : x ∈ X}.

• A mapping ρ : D ⇒ D′ is a binary relation between D and D′, that is, a
subset of D × D′. Its inverse ρ−1 is defined as usual as {〈y, x〉 : 〈x, y〉 ∈ ρ}.
Any mapping may also be viewed as a total function ρ : D → P(D′), from
D to subsets of D′, in the sense that ρ : x 7→ {y : 〈x, y〉 ∈ ρ}. Thus, its
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inverse, ρ−1 : D′ ⇒ D, is the function ρ−1 : D′ → P(D), from D′ to the
subsets of D, such that ρ−1 : y 7→ {x : y ∈ ρ(x)}.

• A total surjective mapping ρ : D ⇒⇒ D′ is a total function, ρ : D → P(D′),
from D to the subsets of D′, such that

⋃
x∈D ρ(x) = D′, and ρ(x) 6= ∅ for all

x ∈ D.

We formalize the conceptual characterization of “as powerful” (see Fig. 2), by
demanding the “stronger” model to have all the functionality of the “weaker”
model up to different views of the world. The “stronger” model should also
have an “abstraction” function, which ensures that when it has a more detailed
view of the world, it may also gather various points into a single one, obtaining
the abstraction capabilities of the “weaker” model.

Definition 2 (Conceptual Power Comparison) Model B is at least as
powerful as model A if for every domain W (the world) and view v : W →7→
dom A, there are a view u : W →7→ dom B and abstraction function g ∈ B, s.t.

(a) for every function f ∈ A there is a function f ′ ∈ B, s.t.
v◦u−1

◦f ′
◦u◦v−1(x) = {f(x)} for all x ∈ dom A,

(b) g(z) = g(y) iff v◦u−1(z) = v◦u−1(y) for all y, z ∈ dom B, and
(c) v◦u−1

◦g(y) = v◦u−1(y) for all y ∈ dom B.

Here “view” is a partial surjective function, and (by the conceptual assump-
tion) all elements x ∈ W may be considered as sets of a fixed cardinality.
The first condition, (a), says that B computes every function of A, up to the
mapping between the domains (v◦u−1). Condition (b) says that the abstrac-
tion function g ∈ B distinguishes between the equivalence classes generated
by the mapping, while (c) says that the distinction is made by choosing a
representative element within each class.

Definition 2 may be simplified, omitting the world-domain. The two different
views of the world are replaced by a “correlation” mapping between the model
domains.

Definition 3 (Power Comparison Notion)

(1) Model B is (computationally) at least as powerful as model A, denoted
B % A, if there are a total surjective mapping ρ : dom B ⇒⇒ dom A
( correlation mapping) and function g ∈ B ( abstraction function), such
that:
(a) for every function f ∈ A there is a function f ′ ∈ B such that

ρ◦f ′
◦ρ−1(x) = {f(x)} for all x ∈ dom A,

(b) g(z) = g(y) iff ρ(z) = ρ(y) for all y, z ∈ dom B, and
(c) ρ◦g(y) = ρ(y) for all y ∈ dom B.

(2) Model B is (computationally) more powerful than A, denoted B ´ A, if
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B % A but A 6% B.
(3) Models A and B are (computationally) equivalent if A % B % A, in

which case we write A ≈ B.

Proposition 1 The computational power relation % between models is a
quasi-order. Computational equivalence ≈ is an equivalence relation.

Theorem 1 Definitions 2 and 3.1 are equivalent. That is B % A by Defini-
tion 3.1 iff B is at least as powerful as A by Definition 2.

Proof. Let %C stand for the conceptual definition (Definition 2).

(1) B %C A implies B % A: Since the world W is assumed to be as big as
required, it follows that there exist a view v of A by a total surjective
function v : W →→ dom A. Hence, the corresponding view of B is also
a total surjective function u : W →→ dom B. Define a total surjective
mapping ρ : dom B ⇒⇒ dom A, by ρ := v◦u−1. We have that B % A via
ρ.

(2) B % A implies B %C A: Let B % A via a total surjective mapping
ρ : dom B ⇒⇒ dom A. We construct the proof in three steps:
(a) Specific world and view. Define a domain W (a world) as a subset of

dom A × dom B, by W := {〈a, b〉 : a ∈ ρ(b)}. Define total surjective
functions v : W →→ dom A and u : W →→ dom B (the views) by
v(〈a, b〉) := a and u(〈a, b〉) := b, for all 〈a, b〉 ∈ W . We have a specific
(total) view of A for which the condition of the conceptual definition
is satisfied, that is for every function f ∈ A there is f ′ ∈ B, s.t.
v◦u−1

◦f ′
◦u◦v−1(x) = {f(x)} for all x ∈ dom A.

(b) Specific world and all views. Let m : W →7→ dom A be an arbitrary
view of A of the world W . By the conceptual assumption, we may
consider the domain W as a domain W ′, by replacing each element
y ∈ W with a set Y of cardinality |W |. Accordingly, the view m
becomes a view m′ : W ′ →7→ dom A, where |m′−1(x)| = |W | for
all x ∈ dom A. Define a partial surjective function ξ : W ′ →7→ W ,
such that m′(z) = v◦ξ(z) for all z ∈ W ′. Define the view of B of
the world, as the partial surjective function u′ : W ′ →7→ dom B, by
u′(z) := u◦ξ(z) for all z ∈ W ′. We have that for every function f ∈ A
there is f ′ ∈ B, s.t. v′

◦u′−1
◦f ′

◦u′
◦v′−1(x) = {f(x)} for all x ∈ dom A.

(c) All worlds and all views. Let W̃ be an arbitrary world and ṽ : W̃ →7→
dom A an arbitrary view of A of the world W̃ . By the conceptual
assumption we can enlarge the world |W̃ | as required, thus we may
assume that |W̃ | ≥ |W |. Define a total surjective function τ : W̃ →→
W s.t. τ(x) = τ(y) implies that ṽ(x) = ṽ(y) for every x, y ∈ W̃ .
Define a view v : W →7→ A by v := ṽ◦τ−1. By the previous step there
is a corresponding view u : W →7→ B, hence we have the required view
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ũ : W̃ →7→ B by ũ := u◦τ .

2

Example 1 Consider a modeling of a simple electric-cable by a model EC,
providing only the identity function over the reals. Then TM 6% EC and EC 6%
TM.

Inclusion of the Identity Function. When the “weak” model includes
the identity function (λx.x), the general comparison notion may be simpli-
fied, requiring the correlation mapping (ρ) to be a surjective function instead
of a surjective mapping. If the “stronger” model is closed under functional
composition, it may be further simplified, replacing the surjective function
with an opposite injection (ψ : dom A ½ dom B). This is similar to the
embedding notion (Definition 4 below) with the additional requirement for an
abstraction function (g). Comparison via a surjective function resembles the
“representation” of [20, p. 33], just that here we insist on a total function.

Lemma 1 Let A be a computational model with the identity function (λx.x ∈
A), then a model B % A iff there exist a total surjective function ϕ : dom B →→
dom A and a function g ∈ B, such that:

(1) for every function f ∈ A there is a function f ′ ∈ B such that ϕ◦f ′(y) =
f ◦ϕ(y) for all y ∈ dom B,

(2) ϕ◦g(y) = ϕ(y) for all y ∈ dom B, and
(3) g(z) = g(y) iff ϕ(z) = ϕ(y) for all y, z ∈ dom B.

Proof. The first direction is obvious, as a function is also a mapping. For
the other direction, let A be a computational model with the identity function
(ι := λx.x ∈ A), and let model B % A via a total surjective mapping ρ :
dom B ⇒⇒ dom A. Assume, by contradiction, that ρ is not a function, hence
elements e 6= t ∈ dom A and z ∈ dom B, such that ρ−1(e) = ρ−1(t) = z. Since
B % A, it follows that there is a function ι′ ∈ B, such that ρ◦ι′◦ρ−1(x) = {ι(x)}
for all x ∈ dom A. Therefore, ρ◦ι′(z) = {e} = {d}. Contradiction. 2

Theorem 2 Let A be a computational model with the identity function
(λx.x ∈ A). Then a model B, closed under functional composition, is at least
as powerful as A (B % A) iff there exist an injection ψ : dom A ½ dom B
and a total function g ∈ B onto rng ψ (g : dom B →→ rng ψ), such that for
every function f ∈ A there is a function f ′ ∈ B such that ψ◦f(x) = f ′

◦ψ(x)
for all x ∈ dom A.
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Proof. Let models A and B, injection ψ and function g as defined in the
theorem. Define a surjective function ϕ : dom B →→ dom A, by ϕ := ψ−1

◦g.
Since B is closed under functional composition, it obviously follows that the
constraints of Lemma 1 are satisfied. Hence, B % A.

For the other direction, if B % A there are function ϕ : dom B →→ dom A and
g ∈ B as defined in Lemma 1. By the constraints of Lemma 1 on g, we can
define an injection ψ : dom A ½ dom B by ψ(x) := ϕ−1(x) ∈ rng g. Hence,
satisfying the required constraints on ψ and g. 2

Example 2 Real recursive functions (Rrec) [14], are more powerful than Tur-
ing machines (TM). That is Rrec ´ TM. The comparison is done via the
injection ψ : N ½ R, where ψ(n) = n [14, p. 18], and the floor function
(λx. bxc) to provide the abstraction capabilities of Rec (the above function g)
[14, p. 10].

See also Theorem 5 for the power equivalence of Turing machines and other
models.

5 Ramifications of Familiar Notions

Various methods have been used to compare the computational power of com-
peting models.

Extended Domains. It is common to claim that a function is incorporated
in any of its extensions. That is, a function f : D → D is incorporated in
f ′ : D′ → D′ if D ⊆ D′ and f = f ′ ¹D. See, for example, [5, p. 654]: “Here
we adopt the convention that a function on N is in an analog class C if some
extension of it to R is, i.e. if there is some function f̃ ∈ C that matches f on
inputs in N.”

By the conceptual framework, “B extends A” can be interpreted as “B having
the potential to be at least as powerful as A for a user who has both domain
views.” For example, one can consider a user who views the world as real
numbers, but can identify the natural numbers among them.

This approach is not appropriate as a general power comparison notion, since
the extended model B doesn’t necessarily have the abstraction capabilities of
A. For example, a mathematician working with paper and pencil may consider
various physical entities to “be” the symbol ‘a’ (e.g. a, a, a, a, a). A model
that lacks the abstraction of the various ‘a’s, treating each of them totally
differently, is not as powerful. Another example is a model that accurately
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doubles a real number (λx.2x). It cannot replace the doubling function on the
natural numbers for a user who doesn’t have the ability to see so accurately
(as might be the case with human users). Consider, also, a model with real
input/input, but it’s a voltage or frequency or something that is really real.
Imagine it has a chaotic function h that is exactly the TM-halting function for
integer inputs, but is discontinuous. So that unless we give it the exact value as
input, the result is meaningless. Would one say that it is hypercomputational
in any meaningful sense?

Embedding. Extending the domain is a special case of embedding. A model
B embeds A, if there is an injection from the domain of A to the domain of
B, via which B has all the functionality of A over the range of the injection.
Actually, embedding is exactly as extending the domain, up to isomorphism.

Definition 4 (Embedding) A computational model B embeds a model A,
denoted B %E A, if there is an injection ψ : dom A ½ dom B, s.t. for every
function f ∈ A there is f ′ ∈ B such that f ′

◦ψ(x) = ψ◦f(x) for all x ∈ dom A.

For example, Turing machines and the (untyped) λ-calculus were shown by
Church [6], Kleene [12], and Turing [19] to embed the partial recursive func-
tions via a unary representation of the natural numbers, and Church numerals,
respectively.

The reasons for the inadequacy of embedding as a generic power comparison
notion are analogous to that of domain-extending.

Example 3 Let RE be the recursively enumerable predicates over N. RE may
embed an expansion with infinitely many non-r.e. partial predicates {hi}. Let

h(n) =





0 program n halts uniformly

1 otherwise
hi(n) =





0 n < i ∨ h(n) = 0

⊥ otherwise .

We have that RE %E RE ∪ {hi}, by an injection ψ(n) = 2n + h(n), as

h′

i
(n) =





0 bn/2c < i or n mod 2 = 0

⊥ otherwise
f ′ =





f(bn/2c) f ∈ RE

h′

i
(n) f = hi .

where f ′ ∈ RE and f ′ = ψ◦f ◦ψ−1 for every f ∈ RE ∪ {hi}. (Without loss of
generality, we are supposing that ψ(0) = h(0) = 0.)

Effective Encoding. A common approach for comparing models over dif-
ferent domains is to require some manner of effectiveness of the encoding; see
[8, p. 21] and [9, p. 290], for example. There are basically two methods:
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(1) One can demand informal effectiveness: “The coding is chosen so that it
is itself given by an informal algorithm in the unrestricted sense” [16, p.
27].

(2) Or one can require encoding effectiveness via a specific model, say, Turing
machines: “The Turing-machine characterization is especially convenient
for this purpose. It requires only that the expressions of the wider classes
be expressible as finite strings in a fixed finite alphabet of basic symbols”
[16, p. 28].

By the conceptual framework, an “effective comparison” means that B is at
least as powerful as A for a human user, assuming humans are capable of
“effective” representations.

Effectivity is a useful notion; however, it is unsuitable as a general power
comparison notion. The first, informal approach is too vague, while the second
can add computational power when dealing with subrecursive models and is
inappropriate when dealing with non-recursive models.

6 When is a Model More Powerful?

We demonstrate that the method commonly used in the literature for “strictly
more powerful” (´) is mathematically improper, as it allows for a model to be
more powerful than itself (A ´ A). We define “complete” models, for which
the common method is appropriate.

In general, the strict part ´∗ of a quasi-order %∗ is %∗ ∩ 6-∗. That is, B ´∗ A
if B %∗ A but not A %∗ B.

The Common Method. Intuitively, one would expect that a proper ex-
pansion of a model (additional functions) is also more powerful, that is, for
B ) A to imply B ´ A. For example, general recursion is considered more
powerful than primitive recursion as it expands it (e.g. with the Ackermann
function), and a model that computes more than Turing machines is consid-
ered more powerful (see, e.g., [17]). Hence, the common method of showing
that a model B is more powerful than model A, for some comparison notion
%∗, is to show that B %∗ C ) A.

The Problem. Unfortunately, it turns out that a proper expansion of a
model is not necessarily more powerful by the standard comparison methods.
That is, B ) A does not imply B ´∗ A, where ´∗ may be embedding, our
suggested notion, or “containment up to isomorphism” (Theorem 3).
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Example 4 Define the set R2 of “even” recursive functions (Rec):

R2 =





λn.





2f(n/2) n is even

n otherwise





: f ∈ Rec





R2 embeds all the recursive functions via the injection λn.2n, though R2 ( Rec.

See also Example 3, for the embedding of non-r.e. predicates in RE.

Note that the common comparison method (see above) permits a model to be
more powerful than itself! For example, one might say that “R2 ´E R2,” since
R2 %E Rec ) R2.

Theorem 3 ([2]) There are models isomorphic to proper expansions of them-
selves. That is, there is a set of functions M over a domain D, and a bijection
π : D ½→ D, s.t. {π◦f ◦π−1 : f ∈ M} ) M .

The Solution. The general solution is to use the strict part of the quasi-
order. For example, with embedding one should show that “B may embed A,
while there is no injection via which A may embed B.”

In addition, one can check whether a specific model is “complete” in the sense
that it is not equivalent (with respect to the relevant notion) to any of its
proper expansions. For complete models, the common (generally improper)
method is suitable, saving the necessity of precluding all possible mappings.
We show, in Section 7.1, completeness for Turing machines and the recursive
functions.

Definition 5 (Complete Models) Let %∗ be a quasi-order (comparison no-
tion). A computational model A is complete, with respect to %∗, if A %∗ B ⊇ A
implies A = B for all B.

Proposition 2 Let %∗ be a quasi-order (comparison notion), and A a com-
plete model w.r.t. %∗. Then B ´∗ A iff there is a model C, such that
B %∗ C ) A.

Theorem 4 Let A be a model with the identity function, closed under function
composition, and complete w.r.t. embedding (%E), then A is complete w.r.t.
power-comparison (%).

Proof. Follows directly from Theorem 2. 2
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Corollary 1 Let A be a model with the identity function, closed under func-
tion composition, and complete w.r.t. embedding. Then a model B is more
powerful than A iff B is at least as powerful as A and embeds some proper
expansion C of A. That is, B ´ A iff there is a model C s.t. B % A ( C -E B.

7 Computability

Some computational models considered to be of equivalent power to Turing
machines are still so according to our suggested comparison notion (Defini-
tion 3).

Theorem 5 Turing machines (TM), the recursive functions (Rec), counter
machines (CM), and random access machines (RAM) are all of the same
computational power. That is, TM ≈ Rec ≈ CM ≈ RAM.

Proof. We base the proof on known results, cited from [10]. The comparison
method of [10] is based on embedding, however, specifically with the above
models it was done via a bijective function, therefore satisfying the power
comparison notion of Definition 3. See [10, pp. 116–118; pp. 131–133; pp.
207–208]. 2

7.1 Strong Hypercomputation

Since the term “hypercomputation” as two common meanings—both comput-
ing more than TM, and computing a (possibly single) incomputable function—
we use the term “strong hypercomputation” to denote the first meaning (see
Section 1).

In Section 6, we saw that a proper expansion of a computational model is
not necessarily more powerful (by any of the common comparison methods).
What does this mean for hypercomputation? Can it be that Turing machines
are as powerful as a model that computes additional functions?

We prove that Turing machines and the recursive functions are complete mod-
els, thus are not susceptible to such an anomaly. Accordingly, we provide some
means to show that a model is strongly hypercomputational.

Definition 6 (Strong Hypercomputation) A model A is strongly hyper-
computational if it is more powerful than Turing machines, that is, if A ´ TM.
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Theorem 6 The recursive functions (Rec) and the partial recursive functions
(PR) are complete w.r.t. embedding.

Proof. Assume, on the contrary, that there is a set of functions M ) Rec,
and an injection ρ : N ½ N, such that Rec %E M via ρ. Let S ∈ M be
the successor function. There is, by assumption, a function S ′ ∈ Rec such that
S ′◦ρ = ρ◦S. Since ρ(0) is some constant and ρ(S(n)) = S ′(ρ(n)), we have that
ρ ∈ Rec. Since ρ is a recursive injection, it follows that ρ−1 is partial recursive
(PR). For every f ∈ M , there is an f ′ ∈ Rec, such that f = ρ−1 ◦ f ′ ◦ ρ; thus
f ∈ PR. Actually, f is total, since rng (f ′◦ρ) = rng (ρ◦f) ⊆ rng ρ. Therefore,
M = Rec.

By the same token, the partial recursive functions (PR) are complete w.r.t.
embedding. 2

Theorem 7 Turing machines (TM) are complete w.r.t. embedding.

Proof. The completeness of Turing machines (TM) w.r.t. embedding follows
directly from its equivalence to the recursive functions (Rec) via a bijective
mapping (Theorem 5), and the completeness of Rec (Theorem 6). 2

Corollary 2 Model A is strongly hypercomputational if any one of the fol-
lowing conditions is satisfied:

(1) A ´ TM.
(2) A ) TM.
(3) There is a model C, such that A % C ) TM.
(4) There is a model C, such that A %E C ) TM and also A % TM.
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