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Abstract. We argue that there is currently no satisfactory general
framework for comparing the extensional computational power of arbi-
trary computational models operating over arbitrary domains. We pro-
pose a conceptual framework for comparison, by linking computational
models to hypothetical physical devices. Accordingly, we deduce a math-
ematical notion of relative computational power, allowing the comparison
of arbitrary models over arbitrary domains. In addition, we claim that
the method commonly used in the literature for “strictly more powerful”
is problematic, as it allows for a model to be more powerful than itself.
On the positive side, we prove that Turing machines and the recursive
functions are “complete” models, in the sense that they are not suscep-
tible to this anomaly, justifying the standard means of showing that a
model is “hypercomputational.”

1 Introduction

Our goal is to formalize comparisons of computational models, that is, the de-
termination when one set of partial functions is computationally more powerful
than another set. We seek a robust definition of relative power, one that does
not depend itself on any notion of computability. It should allow one to compare
arbitrary models over arbitrary domains in some quasi-ordering that captures
the intuitive concept of computational strength. Such a comparison notion (or
notions) should also allow one to prove statements like “analogue machines are
strictly more powerful than digital devices,” even though the two models operate
over domains of different cardinalities.

With a satisfactory comparison notion in place, we look into mathematical
relations between computational models, and properties they confer on models.
We call a model that is not as powerful as any of its proper expansions “com-
plete.” We investigate completeness, and check whether some classical models
enjoy this property.

? This work was carried out in partial fulfillment of the requirements for the Ph.D.
degree of the first author.



Extensionality. We are only interested in the computational aspect of com-
putational models (extensionality), that is, which problems can be solved by a
model, regardless of the solution’s complexity or the model’s mechanisms. Hence,
a computational model is represented simply by a set of (partial) functions (or
multivalued functions) over the domain of its operation.

The Problem. Though model comparison is a common practice in the literature,
it is usually done without a formal comparison notion and without justification
for the chosen method. To the best of our knowledge, there is currently no satis-
factory general means for comparing arbitrary computational models operating
over arbitrary domains. A notion is lacking via which one could show, for exam-
ple, that analogue computers are strictly more powerful than Turing machines,
as well as show that finite automata are more powerful than some weak analogue
model. In Section 4, we list some of the familiar comparison methods and discuss
their ramifications.

The Framework. In Section 2, we propose a general, philosophical, definition of
a computational model and of relative computational power. We understand a
computational model to be a mathematical modeling and idealization of some
hypothetical physical device, from a specific point of view of the world. A model
B is at least as powerful as A if it has the potential to do whatever A does,
under any possible view of the world. Accordingly, we provide, in Section 3, a
method (Definition 3) for comparing arbitrary models over arbitrary domains.

Completeness. In Section 5, we show that the method usually used in the liter-
ature for “more powerful” (´) is mathematically problematic, as it allows for a
model to be more powerful than itself (A ´ A). We define a model that is not as
powerful as any of its proper expansions to be complete. The standard method
of comparison is suitable only for such complete models. On the positive side,
we prove in Section 6.1 that Turing machines and the recursive functions are
complete with respect to the desired comparison notions.

Computability. In Section 6, we show that some of the models known to be of
equivalent power to Turing machines (the recursive functions, random access
machines and counter machines) are indeed so by our suggested general notion.

Hypercomputation. In Section 6.1, we prove that Turing machines and the re-
cursive functions are complete models. Accordingly, we provide a simpler com-
parison notion for showing that a model is hypercomputational. This notion
provides a justification for the (otherwise improper) comparison method used in
the literature for showing that a model is hypercomputational.

Note. We use the Z-standard [3] for function arrows. For example, −7→ denotes a
partial function, →→ is used for a total surjective function, and ½ is an injection.
We use double-arrows for mappings (multi-valued functions). So ⇒⇒ denotes a
total surjective mapping.

Proofs are omitted for lack of space.
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2 The Conceptual Framework

We first propose a general, philosophical, definition of a computational model,
and—in Section 2.2—of relative computational power. In Section 3, we will for-
malize these definitions for comparing arbitrary models over arbitrary domains.
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Fig. 1. A computational model is a mathematical modeling of some hypothetical phys-
ical devices, from a specific point of view of the world

2.1 What is a Computational Model?

We can think of a computational model as a mathematical modeling and ideal-
ization of some hypothetical physical device, from a specific point of view of the
world (see Fig. 1).

– A physical device gets a physical input and returns a physical output. For
example, an electric device may take some electric voltage at two of its pins
as input, and return a voltage at two other pins as output.

– A corresponding computational model takes a specific point of view of the
physical world. For example, a model of a digital computer might view a
voltage lower than 0.5v as the binary value 0 and of 0.5v or higher as 1.
That is, the domain of the model, D, is a “view” of the physical world, W .
This view is a partial surjective function v : W →7→ D.

– The device computes a function on world entities (in our example above,
ξ : R → R), while from the model’s point of view it computes a function on
its domain (in our example, f :{0, 1} → {0, 1}).

A computational model, by itself, can be viewed as a “black box,” computing
a set of partial functions. The domain and range of functions are identical, except
that the range is extended with ⊥, representing “undefined.”

The modeling of a hypothetical device from a specific point of view of the
world will be at the heart of our method of comparing different models. The world
can be chosen to be any set of cardinality at least as large as the cardinality of
the model’s domain.
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The idea that a model encapsulates a point of view of the world is shared by
Minsky [9]:

We use the term “model” in the following sense: To an observer B, an
object A* is a model of an object A to the extent that B can use A*
to answer questions that interest him about A. The model relation is
inherently ternary. . . . It is understood that B’s use of a model entails
the use of encodings for input and output, both for A and for A*. If A
is the world, questions for A are experiments.

Different Domain and Range. There are models with different domain and range,
e.g. numeral input and boolean output. A generalized view is to consider the
“actual” model’s domain to be the union of the original domain and range.

Uniform Computation. It is common to have models with functions of any fixed
arity, like the recursive functions, for example. We consider the “actual” domain
(and range) to be the set of all finite tuples of elements of the original domain.
This is the view taken for Turing machines, in the BSS model [1, pp. 69–70], and
implicitly with recursive functions when comparing them to Turing machines.

Computing over Structures. There are models defined over structures, that is,
over sets together with “built-in” functions and relations. See, for example, [2,
13, 1]. We consider the structure’s set as the domain, and include the structure’s
functions and relations in the model.

2.2 Comparing Computational Power

We generally say that a model B is at least as powerful as A, written B % A,
if it can do whatever A does. When both models have the same domain repre-
sentation, it means “containment”: B is at least as powerful as A if it computes
all the functions that A does. The question is how one should compare models
operating over different domains, as they compute formally-different functions.

We extend the above characterization as follows: B is at least as powerful as A
if it has the potential to do whatever A does for every possible user (an abstract
user, not necessarily human). In other words, for every view that A has of the
world (v : W →7→ dom A), there is a view by B of the world (u : W →7→ dom B),
such that B has the abstraction capabilities of A, and all the functionality of A
from A’s point of view (see Fig. 2, Definition 2, and Definition 3).

Assumption. We want to allow the world-domain W to be as big as required, as
well as the resolution of its elements to be enlarged as much as required. That
is, all elements x ∈ W may be considered as sets of a fixed cardinality.

3 The Formal Comparison Notion

We need to formalize the conceptual framework of the previous section.
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Fig. 2. The “stronger” model, B, should have the potential to provide all the function-
ality of the “weaker” model, A, from any user point of view

Definition 1 (Computational Model).

– A domain is a nonempty set of elements.
– A computational model A over domain D is an object that computes a set

of partial functions f : D−7→ D, which may be interpreted as total functions
f : D → D ∪ {⊥}.

– We write dom A for the domain over which model A operates.
– The extensionality of a model A, denoted ext A, is the set of partial functions

that A computes.
– For models A and B, and a function f we shall write f ∈ A as shorthand

for f ∈ ext A, and A ⊆ B as short for ext A ⊆ ext B.
– We say that a model B properly expands model A if B ) A.

Some clarifications regarding function notations:

– A (partial) function f : D−7→ D′ can be extended to images of subsets of D,
f : P(D)−7→ P(D′), in the standard fashion: f(X) := {f(x) : x ∈ X}.

– A total surjective mapping ρ : D ⇒⇒ D′ is a total function, ρ : D → P(D′),
from D to the subsets of D′, such that

⋃
x∈D

ρ(x) = D′.

Directly formalizing the conceptual characterization of “as powerful” (see
Fig. 2), we get the following:

Definition 2 (Conceptual Power Comparison). Model B is at least as
powerful as model A if for every domain W (the world) and view v : W →7→
dom A, there are a view u : W →7→ dom B and abstraction-function g ∈ B, s.t.

(a) for every function f ∈ A there is a function f ′ ∈ B, s.t. v◦u−1
◦f ′

◦u◦v−1(x) =
{f(x)} for all x ∈ dom A,

(b) g(z) = g(y) iff v◦u−1(z) = v◦u−1(y) for all y, z ∈ dom B, and
(c) v◦u−1

◦g(y) = v◦u−1(y) for all y ∈ dom B.
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Here “view” is a partial surjective function, and (by the conceptual assumption)
all elements x ∈ W may be considered as sets of a fixed cardinality. The first
condition, (a), says that B computes every function of A, up to the mapping
between the domains (v◦u−1). Condition (b) says that the function g ∈ B dis-
tinguishes between the equivalence classes generated by the mapping, while (c)
says that the distinction is made by choosing a representative element within
each class.

Definition 2 may be simplified, omitting the world-domain.

Definition 3 (Power Comparison Notion).

1. Model B is (computationally) at least as powerful as model A, denoted B %

A, if there are a total surjective mapping ρ : dom B ⇒⇒ dom A and function
g ∈ B, such that:
(a) for every function f ∈ A there is a function f ′ ∈ B such that

ρ◦f ′
◦ρ−1(x) = {f(x)} for all x ∈ dom A,

(b) g(z) = g(y) iff ρ(z) = ρ(y) for all y, z ∈ dom B, and
(c) ρ◦g(y) = ρ(y) for all y ∈ dom B.

2. Model B is (computationally) more powerful than A, denoted B ´ A, if
B % A but A 6% B.

3. Models A and B are (computationally) equivalent if A % B % A, in which
case we write A ≈ B.

Proposition 1. The computational power relation % between models is a quasi-
order. Computational equivalence ≈ is an equivalence relation.

Theorem 1. Definitions 2 and 3.1 are equivalent. That is B % A by Defini-
tion 3.1 iff B is at least as powerful as A by Definition 2.

Example 1. Consider a modeling of a simple electric-cable by a model EC, pro-
viding only the identity function over the reals. Then TM 6% EC and EC 6% TM.

Inclusion of the Identity Function. When the “weak” model includes the identity
function (λx.x), the general comparison notion may be simplified, replacing the
surjective mapping (ρ) by a surjective function. If the “stronger” model is closed
under functional composition, it may be further simplified, replacing the surjec-
tive function with an opposite injection (ψ : dom A ½ dom B). This is similar
to the embedding notion (Definition 4 below) with the additional requirement
for an abstraction function (g). Comparison via a surjective function resembles
the “representation” of [15, p. 33], just that here we insist on a total function.

Theorem 2. Let A be a computational model with the identity function (λx.x ∈
A). Then a model B, closed under functional composition, is at least as powerful
as A (B % A) iff there exist an injection ψ : dom A ½ dom B and a total
function g ∈ B onto rng ψ (g : dom B →→ rng ψ), such that for every function
f ∈ A there is a function f ′ ∈ B such that ψ◦f(x) = f ′

◦ψ(x) for all x ∈ dom A.

Example 2. Real recursive functions (Rrec) [10], are more powerful than Turing
machines (TM). That is Rrec ´ TM. The comparison is done via the injection
ψ : N ½ R, where ψ(n) = n [10, p. 18], and the floor function (λx. bxc) to
provide the abstraction capabilities of Rec (the above function g) [10, p. 10].
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4 Ramifications of Familiar Notions

Various methods have been used to compare the computational power of com-
peting models.

Extended Domains. It is common to claim that a function is incorporated in any
of its extensions. That is, a function f : D → D is incorporated in f ′ : D′ → D′

if D ⊆ D′ and f = f ′ ¹D. See, for example, [4, p. 654]: “Here we adopt the
convention that a function on N is in an analog class C if some extension of it
to R is, i.e. if there is some function f̃ ∈ C that matches f on inputs in N.”

By the conceptual framework, “B extends A” can be interpreted as “B hav-
ing the potential to be at least as powerful as A for a user who has both domain
views.” For example, one can consider a user who views the world as real num-
bers, but can identify the natural numbers among them.

This approach is not appropriate as a general power comparison notion, since
the extended model B doesn’t necessarily have the abstraction capabilities of A.
For example, a mathematician working with paper and pencil may consider
various physical entities to “be” the symbol ‘a’ (e.g. a, a, a, a, a). A model that
lacks the abstraction of the various ‘a’s, treating each of them totally differently,
is not as powerful.

Embedding. Extending the domain is a special case of embedding. A model B
embeds A, if there is an injection from the domain of A to the domain of B, via
which B has all the functionality of A over the range of the injection.

Definition 4 (Embedding). A computational model B embeds a model A,
denoted B %E A, if there is an injection ψ : dom A ½ dom B, s.t. for every
function f ∈ A there is f ′ ∈ B such that f ′

◦ψ(x) = ψ◦f(x) for all x ∈ dom A.

For example, Turing machines and the (untyped) λ-calculus were shown by
Church [5], Kleene [8], and Turing [14] to embed the partial recursive functions.

The reasons for the inadequacy of embedding as a generic power comparison
notion are analogous to that of domain-extending.

Example 3. Let RE be the recursively enumerable predicates over N. RE may
embed an expansion with infinitely many non-r.e. partial predicates {hi}. Let

h(n) =

{
0 program n halts uniformly
1 otherwise

hi(n) =

{
0 n < i ∨ h(n) = 0
⊥ otherwise .

We have that RE %E RE ∪ {hi}, by an injection ψ(n) = 2n + h(n), as

h′

i
(n) =

{
0 bn/2c < i or n mod 2 = 0
⊥ otherwise

f ′ =

{
f(bn/2c) f ∈ RE
h′

i
(n) f = hi .

where f ′ ∈ RE and f ′ = ψ◦f◦ψ−1 for every f ∈ RE ∪ {hi}. (Without loss of
generality, we are supposing that ψ(0) = h(0) = 0.)
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Effective Encoding. A common approach for comparing models over different
domains is to require some manner of effectiveness of the encoding; see [6, p. 21]
and [7, p. 290], for example. There are basically two approaches:

1. One can demand informal effectiveness: “The coding is chosen so that it is
itself given by an informal algorithm in the unrestricted sense” [11, p. 27].

2. Or one can require encoding effectiveness via a specific model, say, Turing
machines: “The Turing-machine characterization is especially convenient for
this purpose. It requires only that the expressions of the wider classes be
expressible as finite strings in a fixed finite alphabet of basic symbols” [11,
p. 28].

By the conceptual framework, an “effective comparison” means that B is
at least as powerful as A for a human user, assuming humans are capable of
“effective” representations.

Effectivity is a useful notion; however, it is unsuitable as a general power
comparison notion. The first, informal approach is too vague, while the second
can add computational power when dealing with subrecursive models and is
inappropriate when dealing with non-recursive models.

5 When is a Model More Powerful?

In general, the strict part ´∗ of a quasi-order %∗ is %∗ ∩ 6-∗. That is, B ´∗ A
if B %∗ A but not A %∗ B.

The Common Method. Intuitively, one would expect that a proper expansion
of a model (additional functions) is also more powerful, that is, for B ) A to
imply B ´ A. For example, a model that computes more than Turing machines is
considered more powerful (see, e.g., [12]). Hence, the common method of showing
that a model B is more powerful than model A, for some comparison notion %∗,
is to show that B %∗ C ) A.

The Problem. Unfortunately, a proper expansion of a model is not necessarily
more powerful. That is, B ) A does not imply B ´∗ A, where ´∗ may be embed-
ding, our suggested notion, or “containment up to isomorphism” (Theorem 3).

Example 4. Define the set R2 of “even” recursive functions (Rec):

R2 =

{
λn.

{
2f(n/2) n is even
n otherwise

}
: f ∈ Rec

}

R2 embeds all the recursive functions via the injection λn.2n, though R2 ( Rec.

See also Example 3, for the embedding of non-r.e. predicates in RE.
Note that the common comparison method (see above) permits a model to

be more powerful than itself! For example, one might say that “R2 ´E R2,”
since R2 %E Rec ) R2.

Theorem 3. There are models isomorphic to proper expansions of themselves.
That is, there is a set of functions M over a domain D, and a bijection π : D ½→
D, s.t. {π◦f◦π−1 : f ∈ M} ) M .
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The Solution. The general solution is to use the strict part of the quasi-order.
For example, with embedding one should show that “B may embed A, while
there is no injection via which A may embed B.”

In addition, one can check whether a specific model is “complete” in the
sense that it is not equivalent (with respect to the relevant notion) to any of
its proper expansions. For complete models, the common (generally improper)
method is suitable, saving the necessity of precluding all possible mappings.

Definition 5 (Complete Models). Let %∗ be a quasi-order (comparison no-
tion). A computational model A is complete, with respect to %∗, if A %∗ B ⊇ A
implies A = B for all B.

Proposition 2. Let %∗ be a quasi-order (comparison notion), and A a complete
model w.r.t. %∗. Then B ´∗ A iff there is a model C, such that B %∗ C ) A.

Theorem 4. Let A be a model with the identity function, closed under function
composition, and complete w.r.t. to embedding (%E), then A is complete w.r.t.
power-comparison (%).

Corollary 1. Let A be a model with the identity function, closed under function
composition, and complete w.r.t. to embedding. Then a model B is more powerful
than A iff B is at least as powerful as A and embeds some proper expansion C
of A. That is, B ´ A iff there is a model C s.t. B % A ( C -E B.

6 Computability

Some computational models considered to be of equivalent power to Turing
machines are still so according to our suggested comparison notion (Definition 3).

Theorem 5. Turing machines (TM), the recursive functions (Rec), counter
machines (CM), and random access machines (RAM) are all of the same com-
putational power. That is, TM ≈ Rec ≈ CM ≈ RAM.

6.1 Hypercomputation

In Section 5, we saw that a proper expansion of a computational model is not
necessarily more powerful (by any of the common comparison methods). What
does this mean for hypercomputation? Can it be that Turing machines are as
powerful as a model that computes additional functions?

We prove that Turing machines and the recursive functions are complete
models, thus are not susceptible to such an anomaly. Accordingly, we provide
some means to show that a model is hypercomputational.

Definition 6 (Hypercomputation). A model A is hypercomputational if it
is more powerful than Turing machines, that is, if A ´ TM.

Theorem 6. The recursive functions (Rec) and the partial recursive functions
(PR) are complete w.r.t. embedding.
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Theorem 7. Turing machines (TM) are complete w.r.t. embedding.

Corollary 2. Model A is hypercomputational if any one of the following condi-
tions is satisfied:

1. A ´ TM.
2. A ) TM.
3. There is a model C, such that A % C ) TM.
4. There is a model C, such that A %E C ) TM and also A % TM.
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